Электрохимические технологии в медицине

контрольная работа

1. Применение электрохимии при детоксикации и создании искусственных органов

Моделирование работы различных органов и систем организма -- одно из важнейших задач современной медицинской науки. Поиски в этом направлении ведутся давно и получены хорошие результаты при создании таких искусственных органов, как сердце, почки и легкие. Программа по созданию искусственного сердца сильно стимулировала работы по электроокислению глюкозы и по разработке имплантируемых топливных элементов, работающих на растворенных в крови пациента глюкозе и кислороде, и глюкозных датчиков для определения концентрации сахара в крови. Имплантируемые топливные элементы, в которых в качестве топлива используются составляющие ультрафильтрата крови (глюкоза, глюкозамины, если используются ферменты, разрушающие полисахариды), могут представлять собой идеальные постоянные источники энергии для вспомогательных или контролирующих приборов, следящих за состоянием здоровья пациента. Такие топливные элементы в небольших установках могут сужить источником энергии для сердечных ритмоводителей, почечных стимуляторов, автоматических дозаторов инсулина и аналогичных приборов.

В настоящее время возможным способом решения одной из проблем медицины -- диабет -- является создание искусственной поджелудочной железы с имплантируемым глюкозным датчиком, который должен давать сигнал о содержании сахара в крови пациента и включать дозатор инсулина.

Наибольшие трудности встречаются при имитации работы печени, что связано с большим разнообразием ее функций и недостаточностью сведений о механизмах нарушения ее деятельности. Из всех функций печени -- детокси-цирующая является наиболее важной, витальной, при ее нарушении наступает быстрая гибель организма. Детоксикационная функция печени является не только витальной, но и незаменимой, так как никакая другая система в организме не может компенсировать ее утрату.

В настоящее время стало ясно, что одним из основных аспектов глобальной экологической проблемы является охрана внутренней среды человека, действенный контроль за ее состоянием. У здорового человека эта функция, в значительной степени, осуществляется монооксигеназной системой печени, способствующей удалению из организма гидрофобных токсичных веществ, путем их гидроксилирующего окисления молекулярным кислородом, катализируемого специальным детоксицирующим ферментом -- цитохромом Р-450.

Фермент Р-450 можно считать основной детоксицирующей системой печени. Однако этот фермент работает не сам по себе, а в составе окислительно-восстановительной ферментной цепи, поставляющей на него электроны, необходимые для активации молекулярного кислорода. Гидроксилирующие ферментные системы, использующие в качестве окислителя молекулярный кислород, требует для своего функционирования пиридиннуклеотиды НАДФН и НАДН. В общем виде реакция окисления с участием монооксиленаз печени может быть записана так:

RН + НАДФН + Н+ + О2 > RОН + НАДФ+ + Н2О.

Биологический смысл реакции заключается в том, что окисленное соединение всегда лучше растворимо в воде и поэтому может быть легче, чем исходное вещество, вовлечено в другие метаболические превращения или выделено из организма экскреторными органами. Таким образом, гидрофобные ксенобиотики не могут быть удалены органами выделения, пока они не подвергнутся биотрансформации и не станут гидрофильными.

Простейший детоксицирующий цикл может быть осуществлен принципиально только двумя биомолекулами -- альбумином и цитохромом Р-450. Первая выполняет транспортную роль, вторая--окислительную.

Большое внимание биологов и медиков привлекает проблема создания искусственных систем, способных моделировать детоксицирующие функции печени. Это обусловлено тем, что существующие методы экстракорпоральной детоксикации (гемодиализ и пемосорбция) обладают недостаточной эффективностью по удалению гидрофобных токсинов.

До сих пор не решен окончательно вопрос о механизме активации молекулярного кислорода цитохром Р-450 и неизвестна природа и строение гидроксилирующего агента, однако это не может служить препятствием для поиска простых каталитических и электрохимических систем, способных заменить уникальный гемопротеид, цитохром Р-450, и создать процессы окисления, не уступающие по своей эффективности и селективности ферментным.

В последние десятилетия в связи с проблемой топливных элементов электрохимией достигнуты большие успехи в активации молекулярного кислорода и в окислении различных органических веществ. Кроме того, анализ работы биологических систем показывает, что они основаны на электрохимических принципах. Поэтому электрохимические методы моделирования гидроксилазных реакций, протекающих в микросомах печени, ввиду своей физиологичности привлекают особое внимание.

Впервые идея моделирования детоксицирующей функции печени с помощью электрохимического окисления была развита в 1975 г. Авторы работы предложили удалять избыток токсичных веществ, таких как аммиак, мочевина, мочевая кислота, лекарственные гликозиды, СО, барбитураты, ацетоацетат, креатинин, аланин и др., из крови или других физиологических жидкостей во вживляемой или действующей в экстракорпоральном шунте электрохимической ячейке. Кроме того, была рассмотрена возможность работы таких ячеек, как по принципу топливного элемента (когда на катоде происходит электровосстановление газообразного кислорода или водорода, растворенного в крови пациента, а на аноде происходит окисление токсинов), так и при подключении внешнего источника тока, когда он является поставщиком электродвижущей силы.

Примерно в то же время в лаборатории энзимологии и биоэнергетики Научного центра 2-го Московского Государственного медицинского института была создана электрохимическая модель цитохрома Р-450 и на ее основе разработана детоксикационно-экскреторная система, состоящая из реактора окислителя и диализатора. В простой электрохимической система наблюдалось окисление гидрофобных веществ молекулярным кислородом, восстанавливаемым на катоде. Этот электрохимический реактор моделировал окислительную функцию печени, а диализатор -- экскреторную функцию почек, Однако, несмотря на большой интерес к методу электрохимического окисления, он не нашел клинического применения, так как первые исследования не касались существа проблемы, а лишь рассматривали принципиальную возможность детоксикации организма прямым электроокислением крови и других биологических жидкостей. Аппараты электрохимического окисления использовались только в стендовых опытах на различных растворах и не давали никакого представления о влиянии электрохимического окисления на биологические жидкости организма. Поэтому в последние годы проводились систематические исследования по выяснению принципиальной возможности электроокисления гидрофобных токсинов в крови, лимфе и плазме, определению кинетики и механизма окисления типичных токсинов, определению влияния электрохимического окисления на различные показатели гомеостаза интактных животных, и, наконец, по эффективности использования на уровне организма электрохимического окисления.

Кинетика и механизм электроокисления типичных токсинов исследовались на стационарных, вращающихся и вибрирующих гладких и платинированных платиновых электродах путем прямого сопоставления поляризационных и адсорбционных измерений, вмыполненных в одних и тех же условиях по методике подробно описанной ранее. Была изучена адсорбция и анодное окисление типичных эндогенных субстратов: билирубина, холестерина, мочевины и глюкозы и типичных ксенобиотиков: производных барбитуровой кислоты, этанола; метанола, формальдегида, фенола и некоторых других.

В качестве основного вещества для изучения режимов работы аппарата, имитирующего детоксицирующую функцию печени с помощью электрохимического окисления, был выбран билирубин, так как реакция его окисления в микросомах печени хорошо изучена и легко контролируется визуально и спектрофотометрически. Растворы билирубина готовились по методике, описанной в работе, и в них добавлялось 150 мМ NaCl. Концентрация билирубина в растворе определялась спектрофотометрически (с использованием калибровочной кривой Био-латест билирубин) на приборах Spec-tromom 402 и Spectromom 410 (Венгрия). Для спектрофотометрического определения билирубина использовались две длины волны -- 430 н 480 нм. Все пробы для спектрофотометрического определения билирубина разводились в 30 раз фосфатным буфером. В нескольких сериях записывались абсолютный и дифференциальный спектры билирубина на приборе Uni-сагл-8000 (Cambridje, Англия) в пределах длин волн 350 -- 550 нм. Так как билирубин самоокисляется на свету и это может повлиять на данные экспериментов, проводились контрольные опыты для исключения этого эффекта на результаты исследований.

Одновременно с определением концентрации билирубина ставились опыты на острую токсичность на мышах с блокадой РЭС по методике, описанной в работе.

Стендовые опыты проводились как на модельных растворах билирубина, так и на плазме детей, больных гомолитической болезнью новорожденных.

На интактных животных (всего 54 беспородных собак весом от 6 до 13 кг) была проведена серия экспериментов для выяснения влияния электрохимического окисления на нормальные показатели гомеостаза (26 животных) и на скорость выведения билирубина из организма (14 животных + 14 животных в контрольной группе). У собак под гексеналовым наркозом катетеризировалась бедренная артерия и вена и по артерио-венозному контуру подключался аппарат электрохимического окисления (аппарат и магистрали подвергались предварительной силиконизации). Перед началом перфузии животным вводили гепарин фирмы Рихтер из расчета 500 ед/кг веса животного. Кровь из артерии поступала в реакционную ячейку и затем самотеком возвращалась в бедренную вену. Окисление проводили в течение 2 ч при скорости потока крови через электролизер 50 мл/мин. Морфологические показатели крови исследовались до начала окисления и через 15, 30, 60 и 120 мин окисления. Пробы брались из бедренной вены. Производился подсчет эритроцитов, лейкоцитов, определение развернутой лейко-граммы, содержания гемоглобина, гемокрит свободного гемоглобина плазмы. Одновременно изучались биохимические параметры крови на аппаратах Centribichem-400 и 12- и 6-каналь-ных анализаторах SMAC Autoanalyser System, Техникон (США). Кислотно-щелочное состояние и газовый состав крови исследовались на аппарате микроаструп АВС-2 Radiometer Copenhagen. На 7 собаках изучалось состояние свертывающей системы крови в процессе электрохимического окисления. Определяли количество тромбоцитов, время рекальцификации, толерантности крови к гепарину, тромбопластиновое время по Квику, концентрацию фибриногена. На тромбозластографе Хеллиге (ФРГ) регистрировались тромбоэластографические кривые. Изучалась хемилюминесценция сыворотки крови. Регистрация показателей состояния центральной и периферической гемодинамики в процессе электроокисления осуществлялась на аппарате Mingograph 82 Siemens Elema (ФРГ). После окончания экспериментов животные были забиты для гистологических исследований.

Делись добром ;)