3.2. Дыхание
Дыхание - процесс доставки кислорода (О2) к клеткам организма и использование его в биологическом окислении органических веществ с образованием воды и углекислого газа (СО2), который выводится в атмосферу. Эффективный газообмен возможен при интеграции и координации функций различных органов, которые в совокупности образуют систему дыхания. Последняя включает следующие подсистемы: "внешнее дыхание" (газообмен в легких, через кожу и слизистые оболочки), транспорт газов кровью (дыхательную функцию крови и сердечно-сосудистой системы) и тканевое дыхание (процесс биологического окисления в клетке, сопровождающийся поглощением тканями О2 и выделением СО2).
Газообмен в легких (или «легочное дыхание») обеспечивается легкими с дыхательными путями и капиллярным кровотоком, грудной клеткой с дыхательными мышцами, аппаратом управления. С помощью легочного дыхания осуществляется обмен О2 и СО2 между атмосферным воздухом и артериальной кровью. Газообменная функция легких - одна из важнейших. Ее реализация определяется тремя основными механизмами: вентиляцией, кровотоком и диффузией газов.
Транспорт газов (перенос О2 из легочных капилляров в капилляры тканей и СО2 в обратном направлении) зависит в основном от работы "насоса" сердечно-сосудистой системы и дыхательной функции крови. Соответственно, нарушения его можно разделить на гемодинамические (при сердечной и сосудистой недостаточности) и гемические (уменьшение количества циркулирующего гемоглобина, ухудшение связывания и отдачи дыхательных газов, нарушение растворимости их в крови).
Тканевое дыхание (процесс энергетического обмена) практически во всех клетках человеческого организма происходит аэробным путем, т. е. с использованием кислорода. Окислительное фосфорилирование потребляет более 90 % поступающего в организм кислорода. Оно происходит с участием ферментов (цитохромов) и направлено на синтез АТФ. Основным источником энергии клетки является глюкоза, для метаболизации которой и нужен О2:
С6Н12O6 + 6О2 → 6СО2 + 6Н2О + Энергия
При окислении одной молекулы глюкозы образуется 38 молекул АТФ. Энергия, аккумулированная в АТФ, используется для работы ионных насосов, мышечного сокращения, синтеза белка или клеточной секреции. Организм не способен создавать запасы АТФ и должен его постоянно синтезировать, а это требует непрерывной доставки метаболических субстратов и кислорода к клеткам.
При анаэробном метаболизме, идущем без участия кислорода, образуется всего 2 молекулы АТФ (при превращении пирувата в молочную кислоту). Более того, развивающийся лактат-ацидоз резко ограничивает активность ферментов, участвующих в превращениях. Когда доставка кислорода к тканям улучшается, лактат вновь преобразуется в пируват, и аэробный метаболизм возобновляется.
- Санкт-Петербург
- 2004 Г.
- Часть I
- 2.1. Морально-этические нормы и правовое регулирование деятельности медицинских работников
- “Виновным в преступлении признается лицо, совершившее деяние умышленно или по неосторожности” (извлечение из ст. 24 ук рф).
- 3.2. Дыхание
- 3.2.1. Внешнее дыхание
- 3.2.2. Транспорт газов кровью
- 3.2.3. Регуляция дыхания
- 3.2.4. Дыхательная недостаточность
- 3.3. Кровообращение
- 3.4. Водно-электролитный обмен
- 3.5. Кислотно-основное равновесие
- 3.6. Энергетический обмен при постагрессивных состояниях организма
- 3.7. Система гемостаза
- 3.8. Эндотоксемия и эндотоксикоз
- 3.8.1. Эндогенная интоксикация и острый эндотоксикоз
- 3.8.2. Защитная функциональная система детоксикации организма
- Интоксикация
- 3.8.3. Эндотоксикоз как реализация вредоносного действия эндогенной интоксикации
- 3.9. Система осморегуляции
- 3.10. Интегральная оценка функционального состояния
- 3.11. Обеспечение безопасности больного (мониторинг) во время анестезии, реанимации и интенсивной терапии
- Глава 4. Механизмы формирования боли и пути преодоления ее неблагоприятного влияния на организм
- 4.1. Общее понятие о гомеостазе
- 4.2. Стресс-реакция организма на повреждение
- 4.3. Анатомо-физиологические основы учения о боли
- 4.3.1. Нейрофизиологические механизмы боли
- 4.3.2. Эндогенные болеутоляющие системы мозга
- 4.4. Теории и механизмы действия общих анестетиков
- 4.5. Стадии наркоза
- 4.6. Концепция анестезиологического обеспечения операций
- 4.7. Основные принципы интенсивной терапии
- Глава 5. Основные фармакологические средства, применяемые во время анестезии, реанимации и интенсивной терапии
- 5.1. Холинолитики
- 5.2. Мышечные релаксанты
- 5.3. Препараты, используемые для поддержания кровообращения
- 5.4. Вазодилятаторы
- 5.5. Антиаритмические средства
- 5.6. Анальгетики и местные анестетики
- 5.7. Снотворные средства
- 5.8. Нейролептики и транквилизаторы
- 5.9. Блокаторы гистаминовых рецепторов
- Глава 6. Основные методы, используемые при анестезии и в интенсивной терапии
- 6.1. Искусственная и вспомогательная вентиляция легких
- 6.1.1. Классификация аппаратов ивл и принцип их работы
- 6.1.2. Режимы вентиляции
- 6.1.3. Респираторная поддержка при паренхиматозном повреждении легких
- 6.1.4. Респираторная поддержка при обструктивной патологии легких
- 6.1.5. Методы перехода на самостоятельное дыхание
- 6.1.6. Осложнения искусственной вентиляции легких
- 6.2. Искусственное кровообращение
- 6.3. Искусственная гипотония
- 6.4. Инфузионно-трансфузионная терапия
- 6.5. Эпидуральная блокада
- 6.6. Электроимпульсная терапия
- 6.7. Активная детоксикация
- 6.8. Антибактериальная терапия
- 6.9. Иммуноориентированная терапия
- 6.10. Искусственное лечебное питание
- 6.11. Гипербарическая оксигенация
- 6.12. Иглорефлексотерапия
- 6.13. Принципы ухода за больными