logo
Часть I Общие вопросы

6.1.3. Респираторная поддержка при паренхиматозном повреждении легких

Под паренхиматозным повреждением понимают патологический процесс в легких, в который вовлечены газообменная зона и интерстициальное пространство. Он может быть диффузным или локальным. Примерами диффузного процесса являются кардиогенный отек легких, ОРДС и ОПЛ, интерстициальные пневмонии. Локальные повреждения могут наблюдаться при долевых пневмониях, аспирации, контузии легкого и т.д.

При всех заболеваниях, вызывающих паренхиматозное повреждение легких, имеются в разной степени выраженный интерстициальный отек, альвеолярный отек, недостаток сурфактанта и дисфункция дистальных воздухопроводящих путей. Соответствующие изменения механических свойств легких и нарушения газообмена определяют стратегию респираторной поддержки.

В основном паренхиматозное повреждение легких приводит к снижению растяжимости и уменьшает дыхательный объем. Функциональная емкость легких уменьшена, при этом кривая «объем-давление» сдвинута вправо (рис.6.16).

Рис. 6.16. Кривая объем-давление в норме и при паренхиматозном повреждении легких

Важно иметь в виду, что даже при диффузных процессах степень воспалительного процесса в разных участках легких может быть неодинаковой, соответственно, и механические свойства легочной ткани будут различны. При проведении ИВЛ доставляемый газ в основном поступает в регионы легких с наилучшей растяжимостью и меньшим сопротивлением воздухопроводящих путей (т.е. в более здоровые отделы легких). “Обычный” дыхательный объем, таким образом, может распределяться в наиболее сохранные регионы, приводя к большему региональному объему и к потенциальному повреждению легких за счет перерастяжения его отдельных участков (рис. 6.17). Эти обстоятельства являются одним из доводов для использования при тяжелых паренхиматозных повреждениях легких вентиляции, контролируемой по давлению, поскольку лимитируется максимальное растяжение во всех вентилируемых единицах до установленного уровня, независимо от региональных изменений в легких.

Рис. 6.17. Распределение дыхательного объема между регионами с различной растяжимостью

Паренхиматозное повреждение может также затрагивать воздухопроводящие пути, особенно бронхиолы и альвеолярные ходы. Их сужение и коллабирование способствует ухудшению вентиляции поврежденных отделов легких.

Нарушение газообмена при паренхиматозном повреждении связано также с уменьшением объема легких, нарушением распределения вентиляции и, соответственно, вентиляционно-перфузионных отношений. Степень шунтирования может меняться и в зависимости от фазы дыхательного цикла. Интересно, что может быть низкое соответствие вентиляции и перфузии в инспираторную фазу, и шунт в экспираторную фазу, если имеет место альвеолярный коллапс на выдохе.

Стратегическая цель респираторной поддержки при паренхиматозном повреждении легких заключается в обеспечении адекватного газообмена и минимизации потенциального ятрогенного повреждения легких. При проведении респираторной поддержки клиническое решение принимается в основном с учетом четырех важных факторов: артериального рН, степени артериального насыщения гемоглобина кислородом, фракционной концентрации кислорода (токсическое воздействие кислорода), возможном перерастяжении легких объемом или давлением.

В идеале рН должен быть в переделах нормальных значений 7.35 - 7.45. Однако, если проводится защита легких от чрезмерного перерастяжения (небольшой дыхательный объем), низкий уровень рН вследствие высокого парциального давления РСО2 корригировать довольно сложно. Кроме того, есть сведения, что значения рН в диапазоне 7,1-7,2 достаточно хорошо переносятся больными с острой дыхательной недостаточностью. Этот уровень рН коррелирует с увеличением РСО2 до 80 мм рт. ст. Такую тактику респираторной поддержки, когда допускается развитие респираторного ацидоза с целью предотвращения чрезмерного перерастяжения легких, иногда принято называть допустимой гиперкапнией. Допускается прирост РСО2 на 10 мм рт. ст. в час. Однако эта тактика должна проводиться с крайней осторожностью у больных с патологий ЦНС и нестабильной гемодинамикой (при инотропной поддержке или нарушениях ритма).

На сегодняшний день принято считать, что для адекватного снабжения кислородом тканей SaO2 должна быть выше 88% (PO2 60-65 мм рт. ст.). Более низкое насыщение гемоглобина кислородом (в пределах 85-88%) может достаточно хорошо переноситься, если за счет поддержания соответствующих уровней сердечного выброса и концентрации гемоглобина сохраняется нормальная доставка кислорода тканям (DO2 - 300-400 мл/мин/м2). Независимо от DO2, напряжение кислорода в крови должно поддерживаться не ниже 55 мм рт. ст., чтобы минимизировать эффект легочной вазоконстрикции и, как следствие, не допустить прогрессирования легочной гипертензии.

Концепция повреждения легких избыточным растяжением более подробно изложена в главе 35. Перерастяжение легочной ткани может осуществляться двумя способами: 1) при повторяющемся закрытии и открытии поврежденных альвеол, спадающихся на выдохе; 2) при избыточном перерастяжении легких в конце вдоха за счет большого дыхательного объема или высокого ПДКВ.

В соответствии с этим требуется во-первых, восстановить газообмен в “рекрутируемых альвеолах” с помощью ПДКВ, чтобы не перерастягивать здоровые регионы легких; во-вторых, – избежать перерастяжения здоровых альвеол во время инспираторной фазы, ориентируясь на давление плато (не больше 35 мм рт. ст.). Лучшая оценка механических свойств легких может быть достигнута с использованием графического мониторинга кривой «объем-давление» (рис. 6.18).

Рис. 6.18. Кривая «объем-давление», как критерий подбора параметров вентиляции

Точная концентрация О2, при которой он становится токсичным, неизвестна, допустимым принято считать уровень FiO2 – 0,5-0,6.

В совокупности основную цель респираторной поддержки можно свести к обеспечению оптимального уровня pH и SaO2 при минимальном растяжении легких (оценивается по давлению в контуре) и концентрации кислорода в подаваемой смеси (табл. 6.3).

Таблица 6.3

Цели респираторной поддержки

Цель

Ключевой параметр

Пороговое значение

Вентиляция/уровень CO2

pH

7.20-7.45

Оксигенация

SaO2

88%

Избежать ятрогенного повреждения растяжением

давление плато

< 35 cm H2O с адекватным рекрутированием коллабированных альвеол

Токсическое действие кислорода

FiО2

< 0.6

Выбор режима и подбор параметров респираторной поддержки. При тяжелом повреждении легких в основном используется принудительная вентиляция легких, например режимы CMV-PC, CMV-VC, AssistCMV, IMV, SIMV. Этот подход гарантирует выполнение большей части работы дыхания вентилятором. Использование триггерной вентиляции (например, AssistCMV) позволяет больному инициировать дополнительные вдохи (с заданным давлением или объемом), что может помочь в обеспечении требуемого уровня СО2 и улучшить самочувствие пациента. Однако в ряде случаев сложно достичь адекватной синхронизации дыхания больного и работы аппарата ИВЛ, что требует использования релаксантов и седации. Эта мера должна быть использована, когда другие способы неэффективны.

При менее тяжелых формах паренхиматозной дыхательной недостаточности или на этапе выздоровления могут использоваться режимы вспомогательной вентиляции легких. Существует также подход, который предусматривает использование ВВЛ при тяжелом ОПЛ. Считается, что вентиляция с сохраненным спонтанным дыханием более предпочтительна вследствие меньшего давления в дыхательных путях и лучшей синхронизации больного с аппаратом ИВЛ (уменьшение седации), а также меньшего влияния на системную гемодинамику.

Выбор контроля по объему или по давлению зависит от конкретной клинической цели. Если в основном необходимо обеспечить адекватный уровень РСО2, при котором достигается комфорт больного и невысокое давление в дыхательных путях (умеренное повреждение легких) предпочтительна вентиляция, контролируемая по объему. Напротив, если риск перерастяжения легких достаточно велик и необходимо достичь синхронизации больного с аппаратом ИВЛ (уровень РСО2 не является первоочередной задачей), предпочтительна вентиляция легких, контролируемая по давлению.

Дыхательный объем и ПДКВ должны быть подобраны таким образом, чтобы давление плато не превышало 35 см Н2О. Для подержания такого давления может возникнуть необходимость снижения дыхательного объема до 5-6 мл/кг вместо традиционно используемых 8-10 мл/кг.

Подбор частоты дыхания, как правило, осуществляется по уровню РСО2. Начальная частота дыхания обычно составляет 12-18 в мин. Увеличение частоты и, соответственно, минутной вентиляции, приводит к увеличению выведения СО2. В определенный момент, однако, происходит задержка элиминации газа («воздушная ловушка») вследствие неадекватного времени выдоха. В этой ситуации при вентиляции с контролем по давлению снижается минутная вентиляция, а при вентиляции, управляемой по объему, повышается давление в дыхательных путях. При обычных параметрах вдоха это происходит при частоте дыхания более 35 в мин, а иногда и раньше, если используется инвертируемое отношения вдоха к выдоху или при очень большой постоянной времени.

Цель установки ПДКВ - рекрутировать “рекрутируемые” альвеолы, не перерастягивая уже открытые. ПДКВ выполняет свою функцию, предотвращая коллабирование на выдохе раскрываемых дыхательным объемом поврежденных альвеол. Эффект рекрутирования может быть усилен временным (на 1 мин) установлением ПДКВ на 5-10 см Н2О выше оптимального. Подбор оптимального ПДКВ осуществляется на основе показателей механики дыхания или газообмена.

При подборе оптимального ПДКВ на основе показателей механики существует два основных подхода. Первый заключается в том, чтобы с помощью кривой «объем-давление» установить значения дыхательного объема (VT) и ПДКВ между нижней и верхней точками изгиба кривой. Затем постепенно следует изменить ПДКВ, чтобы определить уровень, когда легочно-торакальный комплайнс будет наибольшим. Используя в качестве критерия показатели газообмена, титруют уровень ПДКВ (после рекрутирования спавшихся альвеол за счет маневра, описанного выше) и определяют момент, когда уровень FiО2 будет минимальным. Обычно используют ПДКВ в пределах 8-25 см Н2О.

Второй подход основан на изменении отношения вдоха к выдоху. Установка инспираторного времени и отношения вдоха к выдоху требует рассмотрения с нескольких позиций. Нормальное отношение приблизительно составляет от 1:2 до 1:4. Эти параметры способствуют комфортным ощущениям больного и поэтому используются при установке начального режима ИВЛ. Оценка графического мониторинга способствует установке адекватного времени выдоха, чтобы предотвратить развитие внутреннего ПДКВ (ауто-ПДКВ). Обратное соотношение вдоха к выдоху I:E может использоваться в качестве альтернативы увеличению ПДКВ с целью улучшения вентиляционно-перфузионных отношений при тяжелой дыхательной недостаточности. Обычно инвертируемое отношение вдоха к выдоху используется у больных, у которых подбор ПДКВ и давления вдоха не привел к нормализации показателей газообмена или используется токсическая концентрация О2.

Удлинение инспираторного времени имеет несколько физиологических эффектов. Во-первых, длинный вдох приводит к удлинению времени смешивания газа в альвеолах и воздухопроводящих путях. Во-вторых, длительное инспираторное время дает лучшую возможность плохо наполняемым альвеолярным единицам вентилироваться и рекрутироваться. И, наконец, если экспираторное время становится неадекватным, развивается ауто-ПДКВ. Показано, что использование этого маневра в ряде случаев способствует улучшению газообмена, хотя какой именно из физиологических механизмов способствует этому точно неизвестно.

Когда используется инвертируемый режим, необходимо также иметь в виду и некоторые другие аспекты. Во-первых, развитие воздушной ловушки имеет разные последствия при вентиляции с контролем по объему и по давлению. Во-вторых, продленный вдох чаще используется с вентиляцией, контролируемой по давлению, чтобы использовать быстрый начальный поток и ограничение по давлению. Иногда инвертируемое отношение вдоха к выдоху применяется и при объемной вентиляции, причем, как правило, за счет удлинения паузы вдоха. В-третьих, длительное инспираторное время приводит к повышению среднего давления за дыхательный цикл, что может привести к снижению венозного возврата. Более того, в присутствии воздушной ловушки альвеолярное давление выше, чем давление в воздухопроводящих путях, и это делает мониторинг внутригрудного давления более сложным. В-четвертых, увеличение отношения вдоха к выдоху более чем 1:1 (или время вдоха более 1,5 с) крайне некомфортно для больного. Обычно в этих случаях требуется седация и релаксация.

Учитывая все это, удлиненная инспираторная фаза должна использоваться только при тяжелой дыхательной недостаточности, опытными специалистами и при наличии соответствующего мониторинга механики дыхания. Расчет при этом должен строиться на улучшение распределения газа и наполнения слабовентилируемых альвеол, но не на создание ауто-ПДКВ. Это связано с тем, что убедительных данных, доказывающих преимущество ауто-ПДКВ в отношении улучшения газообмена и нормализации вентиляционно-перфузионных отношений по сравнению с обычным внешним ПДКВ не имеется. Более того, ауто-ПДКВ может оказаться выше в регионах легких с обструкцией дыхательных путей и нормальной растяжимостью, чем в зонах, где легкие более упругие и требуют расправления. При внешнем ПДКВ распределение давления более равномерно.