5.2. Основные положения мембранной теории. Потенциал покоя.
Способность нервной системы и мышц генерировать электрические потенциалы известна давно - со времен работ Гальвани в конце 18 столетия. Однако наши знания о том, как возникает это биологическое электричество при функционировании нервной системы, основаны на исследованиях 40-летней давности, после того как были открыты гигантские аксоны кальмара, толщиной до 1 мм. Большая толщина этих волокон позволила провести на них некоторые из самых ранних электрофизиологических исследований.
Все живые клетки нашего тела обладают свойством “электрической полярности”. Это означает, что по отношению к какой-то отдаленной и явно нейтральной точке (электрики называют ее “землей”) внутренняя часть клетки испытывает относительный недостаток положительно заряженных частиц и поэтому, мы говорим, отрицательно заряжена относительно наружной стороны клетки. Что же это за частицы, находящиеся внутри и вне клеток нашего тела.
Жидкости нашего тела - это плазма, внеклеточная жидкость, спинномозговая жидкость - все это разновидности соленой воды. Встречающиеся в природе соли обычно составлены из нескольких химических элементов: Na, К, Са, Мg, несущие положительные заряды в жидкостях тела и Cl, Р, и остатков некоторых более сложных веществ, несущих отрицательный заряд. Заряженные молекулы или атомы именуются ионами. Положительно заряженные ионы называются катионами (Na+, К+, Са+, Мg+), отрицательно заряженные ионы называются анионами (Сl, Р, анионы белков). Внутри клеток относительный дефицит катионов обусловливает общий отрицательный заряд. Этот отрицательный заряд возникает потому, что мембрана клетки проницаема не для всех солей в равной мере и является хорошим электрическим изолятором (рис. 11).
Нервная и мышечная клетки, подобно другим клеткам организма, ограничены липопротеиновой мембраной, которая является хорошим электрическим изолятором. Мембрана соответствует нейро- и сарколемме, которые выявляются с помощью электронного микроскопа. По обе стороны мембраны, между содержимым клетки и внеклеточной жидкостью, обычно существует электрическая разность потенциалов - мембранный потенциал (МП). Мембранный потенциал оказывает влияние на процессы трансмембранного обмена веществ и в этом отношении важен, например, для функции эпителия почечных канальцев. В нервных и мышечных клетках изменения мембранного потенциала составляют основу деятельности клетки - переработка информации и процесса сокращения. Поэтому мембранный потенциал и его изменения следует рассмотреть подробно.
Датчиком, который обнаруживает присутствие потенциала в клетке, служит микроэлектрод - стеклянный капилляр, вытянутый так, чтобы получился очень тонкий кончик (диаметром менее 1 мкм), и заполненный проводящим ток раствором (рис. 12).
Референтным электродом во внеклеточной среде служит хлорированная серебряная пластинка. В начале регистрации оба электрода находятся во внеклеточной среде, и разности потенциалов между ними нет; график на схеме показывает нулевую “ внеклеточного потенциала”. Когда отводящий электрод проходит через клеточную мембрану в клетку, вольтметр регистрирует скачкообразный сдвиг потенциала примерно до -80 мВ. Этот сдвиг и соответствует мембранному потенциалу.
Схема расположения зарядов на мембране в состоянии покоя.
Рис. 11.
Схема для измерения мембранного потенциала.
Рис. 12.
В нервной и мышечной клетках мембранный потенциал долго сохраняется постоянным, если только клетки не активируются какими-то внешними воздействиями. Мембранный потенциал такой покоящейся клетки называется мембранным потенциалом покоя или просто потенциалом покоя (ПП). Таким образом, мембранным потенциалом покоя или потенциалом покоя называют разность потенциалов покоящейся клетки между внутренней и наружной сторонами мембраны. Внутренняя мембрана клетки заряжена отрицательно по отношению к наружной. ПП всегда отрицателен, у теплокровных животных он составляет от -50 до -100 мВ, исключение составляют гладкомышечные клетки, которые имеют низкий ПП - -30 мВ. Следовательно, в состоянии покоя клеточная мембрана поляризована. Уменьшение величины МП называют деполяризацией, увеличение - гиперполяризацией, восстановление до исходного уровня - реполяризацией.
Как и все клетки организма, нейрон способен поддерживать постоянство своей внутренней среды, заметно отличающейся по составу от окружающей жидкости. Особенно поразительны отличия в концентрациях ионов натрия и калия. Наружная среда в 10 раз богаче натрием, чем внутренняя, а внутренняя среда в 20-100 раз богаче калием, чем наружная. В состоянии покоя клеточная мембрана хорошо проницаема для калия, менее проницаема для натрия и непроницаема для внутриклеточных белков и других органических ионов. Ионы калия диффундируют из клетки по концентрационному градиенту, а непроникаемые анионы остаются в цитоплазме, обеспечивая появление разности потенциалов на мембране. Возникающая разность потенциалов препятствует выходу калия из клетки и при некотором ее значении наступает равновесие между выходом калия по концентрационному градиенту и входом этих катионов по возникающему электрическому градиенту. МП, при котором достигается это равновесие, называется равновесным потенциалом. Если бы в клетке работали бы только законы диффузии, то рано или поздно концентрации натрия, калия, хлора по обе стороны мембраны выровнялись бы, т.к., напомним, эти ионы относительно проницаемы для мембраны. Но этого не происходит, мембрана клетки имеет заряд, обусловленный разностью концентраций ионов внутри и снаружи клетки. Постоянство концентраций этих ионов в клетке поддерживается за счет специального механизма активного транспорта, благодаря внутреннему мембранному белку, называемому натрий-калий-аденозитрифосфатазным насосом, или Na+-К+-АТФ-насосом, или просто натрий-насосом (Na+ - насос).
Белковая молекула Na+-насоса имеет молекулярный вес 272000 и размеры 6 на 8 нм, что несколько больше толщины клеточной мембраны. Каждый натрий-насос может использовать энергию, запасенную в форме фосфатной связи АТФ, для того, чтобы обменять 3 иона натрия внутренней среды на 2 иона калия наружной.
- Физиология центральной нервной системы
- 1. Введение в физиологию нервной системы. Основные понятия.
- 1.1. Понятие физиологии нервной системы. Основные функции центральной нервной системы.
- 1.2. Понятие периферической и центральной нервной системы.
- 1.3. Основные методы изучения нервной системы.
- 1.4. Основные открытия в области физиологии центральной нервной системы.
- Важнейшие открытия в нейрофизиологии
- 2. Филогенез нервной системы.
- 2.1. Диффузная нервная система.
- 2.2. Ганглиозная нервная система.
- 2.3. Трубчатая нервная система.
- 3. Эмбриогенез нервной системы.
- 3.1. Понятие и этапы эмбриогенеза.
- Инвагинация Гаструла
- 3.2. Эмбриогенез нервной системы.
- 3.3. Развитие спинного мозга.
- 3.4. Развитие головного мозга.
- 4. Строение и функции нейрона.
- 4.1. Основы клеточного строения.
- 4.2. Клеточная мембрана, её строение и функции.
- Модель молекулы мембранного липида.
- Реакция образования белковой цепочки (дипептида):
- 4.3. Нейрон, его строение. Аксон, дендриты. Миелинизация волокон нейрона. Типы нейронов.
- Типы нейронов
- 4.4. Афферентные и эфферентные волокна.
- 4.5. Нейроглии.
- 5. Электрические процессы, происходящие в нейроне.
- 5.1. Раздражимость и возбудимость живых клеток.
- 5.2. Основные положения мембранной теории. Потенциал покоя.
- 5.3. Модель сопряженного транспорта.
- 5.4. Резюме по теме ”Мембранный потенциал покоя“.
- 5.5. Потенциал действия.
- П отенциалы действия в различных тканях млекопитающих.
- Фазы потенциала действия.
- 5.6. Механизмы потенциала действия.
- 5.6.1. Закон “всё или ничего”.
- 5.6.2. Ионные токи во время пд.
- 5.6.3. Рефрактерные периоды.
- 5.6.4. Характеристика канальных молекул.
- 5.7. Кабельные свойства аксона, электротон.
- 5.8. Рецептор, генерация рецепторного потенциала.
- 5.8.1. Анализ раздражений.
- 5.8.2. Общая характеристика деятельности рецепторов.
- 5.9. Трансформация рецепторного потенциала в процессе возбуждения.
- 5.10. Адаптация.
- Вопросы для подготовки к экзаменам.
- Темы рефератов.
- Список литературы.