5.3. Модель сопряженного транспорта.
Активный транспорт натрия из клетки имеет компонент, сопряженный со входом калия в клетку. Преимущество такого насоса в том, что он экономит энергию - свойство важное для энергетического баланса клетки. В мышечной клетке в состоянии покоя 10-20 % метаболизма тратится на обеспечение активного транспорта.
На схеме (рис. 13) изображена теоретическая модель сопряженного насоса, которая помогает понять механизм его действия. У внутренней стороны мембраны натрий связывается с переносчиком Y, образуя молекулу Na-Y. Na-Y диффундирует через мембрану и спонтанно распадается у наружной ее стороны. Таким образом, концентрация Na+ у наружной стороны мала и выход Na-Y преобладает над входом.
Схема сопряженного транспорта.
Внеклеточная среда
Рис. 13.
Такое временное связывание с молекулой переносчика Y позволяет Na+ диффундировать наружу, против концентрационного и электрического градиентов. У наружной стороны мембраны молекула Y превращается в молекулу переносчика Х, которая связывается с К+ в наружном растворе. Возникающее в результате этого К-Х диффундирует через мембрану, распадаясь у ее внутренней стороны на К+ и Х. Внутри клетки используется метаболитическая энергия распада АТФ для преобразования молекулы Х вновь в молекулу Y. Это единственная эндотермическая реакция цикла; сопряженность Х и К+ экономит около половины той энергии, которая потребовалась бы для несопряженного транспорта Na+.
- Физиология центральной нервной системы
- 1. Введение в физиологию нервной системы. Основные понятия.
- 1.1. Понятие физиологии нервной системы. Основные функции центральной нервной системы.
- 1.2. Понятие периферической и центральной нервной системы.
- 1.3. Основные методы изучения нервной системы.
- 1.4. Основные открытия в области физиологии центральной нервной системы.
- Важнейшие открытия в нейрофизиологии
- 2. Филогенез нервной системы.
- 2.1. Диффузная нервная система.
- 2.2. Ганглиозная нервная система.
- 2.3. Трубчатая нервная система.
- 3. Эмбриогенез нервной системы.
- 3.1. Понятие и этапы эмбриогенеза.
- Инвагинация Гаструла
- 3.2. Эмбриогенез нервной системы.
- 3.3. Развитие спинного мозга.
- 3.4. Развитие головного мозга.
- 4. Строение и функции нейрона.
- 4.1. Основы клеточного строения.
- 4.2. Клеточная мембрана, её строение и функции.
- Модель молекулы мембранного липида.
- Реакция образования белковой цепочки (дипептида):
- 4.3. Нейрон, его строение. Аксон, дендриты. Миелинизация волокон нейрона. Типы нейронов.
- Типы нейронов
- 4.4. Афферентные и эфферентные волокна.
- 4.5. Нейроглии.
- 5. Электрические процессы, происходящие в нейроне.
- 5.1. Раздражимость и возбудимость живых клеток.
- 5.2. Основные положения мембранной теории. Потенциал покоя.
- 5.3. Модель сопряженного транспорта.
- 5.4. Резюме по теме ”Мембранный потенциал покоя“.
- 5.5. Потенциал действия.
- П отенциалы действия в различных тканях млекопитающих.
- Фазы потенциала действия.
- 5.6. Механизмы потенциала действия.
- 5.6.1. Закон “всё или ничего”.
- 5.6.2. Ионные токи во время пд.
- 5.6.3. Рефрактерные периоды.
- 5.6.4. Характеристика канальных молекул.
- 5.7. Кабельные свойства аксона, электротон.
- 5.8. Рецептор, генерация рецепторного потенциала.
- 5.8.1. Анализ раздражений.
- 5.8.2. Общая характеристика деятельности рецепторов.
- 5.9. Трансформация рецепторного потенциала в процессе возбуждения.
- 5.10. Адаптация.
- Вопросы для подготовки к экзаменам.
- Темы рефератов.
- Список литературы.