16. Адаптация рецепторов к силе раздражения. Корковый уровень сенсорных систем. Взаимодействие сенсорных систем.
Для большинства рецепторов, независимо от их структуры, характерно свойство привыкания к постоянно действующему раздражителю. Это свойство называется адаптацией. Она проявляется, во-первых, в снижении чувствительности к действию раздражителя; во-вторых, в повышении его дифференциальной чувствительности к стимулам, близким по силе к адаптирующему (на фоне длительно действующего раздражителя различается больше градации сравнительно слабых его изменений). Адаптация свойственна для всех рецепторов, за исключением вестибуло- и проприорецепторов. По скорости адаптации различают быстроадаптирующиеся, медленноадаптирующиеся, промежуточные и не адаптирующиеся. При адаптации наблюдается снижение величины генераторного потенциала или полное его исчезновение. При прекращении действия раздражителя адаптация, вызванная его влиянием, исчезает, и чувствительность рецепторов повышается (например, наблюдается обострение слуха, когда в помещении прекращается шум). В основе адаптации рецепторов лежат биофизические процессы: 1) механическая адаптация специализированных покровных тканей - рецепторов (перераспределение капсулы в тельцах Паччини); 2) адаптация собственно рецепторного окончания (снижается проницаемость для ионов Nа, т.е. развивается процесс, подобный натриевой инактивации); 3) адаптация проводникового аппарата, 4) адаптация центрального аппарата.
При поступлении в более высокие уровни нервной системы происходит расширение сферы сигнализации, приходящей от одного рецептора. Например, в зрительной системе сигналы одного рецептора связаны с десятками ганглиозных клеток и могут, в принципе, передавать информацию любым корковым нейронам зрительной коры.
С другой стороны, по мере проведения сигналов происходит сжатие информации. Например, одна ганглиозная клетка сетчатки объединяет информацию от сотни биполярных клеток и десятков тысяч рецепторов, т. е. такая информация поступает в зрительные нервы уже после значительной обработки, в сокращенном виде.
Существенной особенностью деятельности проводникового отдела сенсорных систем является передача без искажений специфической информации от рецепторов к коре больших полушарий.
Большое количество параллельных каналов помогает сохранить специфику передаваемого сообщения, а процессы бокового (латерального) торможения изолировать эти сообщения от соседних клеток и путей.
Одной из важнейших сторон обработки афферентной информации является отбор наиболее значимых сигналов, осуществляемый восходящими и нисходящими влияниями на различных уровнях сенсорных систем.
Такое избирательное повышение активности небольшой территории коры имеет значение в организации акта внимания, выделяя на общем афферентном фоне наиболее важные в данный момент сообщения.
Взаимодействие сенсорных систем
Взаимодействие сенсорных систем осуществляется на спинальном, ретикулярном, таламическом и корковом уровнях. Особенно широка интеграция сигналов в ретикулярной формации. В коре большого мозга происходит интеграция сигналов высшего порядка. В результате образования множественных связей с другими сенсорными и неспецифическими системами многие корковые нейроны приобретают способность отвечать на сложные комбинации сигналов разной модальности. Это особенно свойственно нервным клеткам ассоциативных областей коры больших полушарий, которые обладают высокой пластичностью, что обеспечивает перестройку их свойств в процессе непрерывного обучения опознанию новых раздражителей. Межсенсорное (кроссмодальное) взаимодействие на корковом уровне создает условия для формирования «схемы (или карты) мира» и непрерывной увязки, координации с ней собственной «схемы тела» организма.
17. Строение и функции зрительной сенсорной системы. Строение рецепторов, их расположение и функции; возбудимость и адаптация рецепторов. Аккомодация, поле зрения, острота зрения, бинокулярное зрение, цветовое зрение.
Строение органа зрения
1 - роговица; 2 - передняя камера глаза; 3 - хрусталик; 4 - радужная оболочка; 5 - задняя камера глаза; 6 - коньюктива; 7 - латеральная прямая мышца; 8 - белочная оболочка (склера); 9 - собственная сосудистая оболочка (хориоидеа); 10 - сетчатка; 11 - центральная ямка; 12 - зрительный нерв; 13 - углубление диска; 14 - наружная ось глаза; 15 - медиальная прямая мышца; 16 - поперечная ось глазного яблока; 17 - ресничное тело; 18 - ресничный поясок; 19 - зрительная ось (глаза).
6. Строение сетчатки
1 - палочки; 2 - колбочки; 3 - горизонтальная клетка; 4 - биполярные клетки; 5 - амакриновые клетки; 6 - ганглиозные клетки; 7 - волокна зрительного нерва
7. Типы фоторецепторов
Фоторецепторы. К слою пигментного эпителия изнутри примыкает слой зрительных рецепторов: палочек и колбочек. В каждой сетчатке человека находится 6-7 млн. колбочек и 110-125 млн. палочек. Они распределены в сетчатке неравномерно. Центральная ямка сетчатки - фовеа (fovea centralis) содержит только колбочки. По направлению к периферии сетчатки количество колбочек уменьшается, а количество палочек увеличивается, так что на дальней периферии имеются только палочки. Колбочки функционируют в условиях больших освещённостей, они обеспечивают дневное и цветовое зрение; более светочувствительные палочки ответственны за сумеречное зрение.
Цвет воспринимается лучше всего при действии света на центральную ямку сетчатки, в которой расположены почти исключительно колбочки. Здесь же и наибольшая острота зрения. По мере удаления от центра сетчатки восприятие цвета и пространственное разрешение постепенно уменьшается. Периферия сетчатки, на которой находятся исключительно палочки, не воспринимает цвета. Зато световая чувствительность колбочкового аппарата сетчатки во много раз меньше, чем у палочкового. Поэтому в сумерках из-за резкого понижения колбочкового зрения и преобладания периферического палочкового зрения мы не различаем цвет ("ночью все кошки серы").
Орган зрения тесным образом связан с гм: светочувствительная оболочка глаза развивается из мозговой нервной ткани. Орган зрения заключает периферическую часть зрительного анализатора – фоторецепторы. Проводником явл зрительный нерв, центральной частью явл зрительная зона в коре затылочной доли больших полушарий. Зрительный нерв – 2 пара черепно-мозговых нервов, по которым зрительное раздражение, воспринятое чувствительными клетками сетчатки, передаются в гм.
Адаптация глаза — приспособление зрения к различным условиям освещения. Адаптацияпроисходит к изменениям освещённости (различают адаптацию к свету и темноте), цветовой характеристики освещения (способность воспринимать белые предметы белыми даже при значительном изменении спектра падающего света).
Адаптация к свету наступает быстро и заканчивается в течение 5 мин., адаптация глаза к темноте — процесс более медленный. Минимальная яркость, вызывающая ощущение света, определяет световую чувствительность глаза. Последняя быстро нарастает в первые 30 мин. пребывания в темноте, её повышение практически заканчивается через 50—60 мин. Адаптацию глаза к темноте исследуют при помощи специальных приборов — адаптометров.
Адаптация проявляется также в способности зрения частично компенсировать дефекты самого зрительного аппарата (оптические дефекты хрусталика, дефекты сетчатки, скотомы и пр.)
Периферическое зрение (поле зрения) — определяют границы поля зрения при проекции их на сферическую поверхность (при помощи периметра). Поле зрения — пространство, воспринимаемое глазом при неподвижном взгляде. Зрительное поле является функцией периферических отделов сетчатки; его состоянием в значительной мере определяется возможность человека свободно ориентироваться в пространстве.
Изменения поля зрения обуславливаются органическими и/или функциональными заболеваниями зрительного анализатора: сетчатки, зрительного нерва, зрительного пути, ЦНС. Нарушения поля зрения проявляются либо сужением его границ (выражают в градусах или линейных величинах), либо выпадением отдельных его участков (Гемианопсия), появлением скотомы.
Остротой зрения называется максимальная способность глаза различать отдельные детали объектов. Остроту зрения определяют по наименьшему расстоянию между двумя точками, которые глаз различает, т. е. видит отдельно, а не слитно. Нормальный глаз различает две точки, видимые под углом в 1′. Максимальную остроту зрения имеет желтое пятно. К периферии от него острота зрения намного ниже. Полем зрения называется часть пространства, видимая при неподвижном положении глаза. Для черно-белых сигналов поле зрения обычно ограничено строением костей черепа и положением в глазницах глазных яблок. Для цветных раздражителей поле зрения меньше, так как воспринимающие их колбочки находятся в центральной части сетчатки. Бинокулярное зрение. Человек обладает бинокулярным зрением, т.е.зрением двумя глазами.
18. Вестибулярная сенсорная система. Вестибулярные рецепторы преддверия и полукружных каналов, вестибуло-соматические и вестибуло-вегетативные рефлексы Значение вестибулярной сенсорной системы в управлении движениями.
Вестибулярная сенсорная система служит для анализа положения и движения тела в пространстве. Это одна из древнейших сенсорных систем, развывшаяся в условиях действия силы тяжести на земле. Импульсы вестибулярного аппарата используются в организме для поддержания равновесия тела, для регуляции и сохранения позы, для пространственной организации движений человека. В периферическом отдела вестибулярной системы выделяют преддверье (отолитовый аппарат) и полукружные каналы. Этот отдел локализован в не слуховой части лабиринта внутреннего уха. Преддверье и сообщающиеся с ним три полукружных канала лежат позади и выше улитки. Костный лабиринт содержит жидкость (перилимфу). Внутри костного лабиринта расположен повторяющий его форму перепончатый лабиринт, заполненный эндолимфой.
^ В преддверии перепончатый лабиринт образует два мешочка эллиптический (утрикулюс) и сферический (сакулюс). В мешочках находятся скопления рецепторных клеток (пятна или макулы). При нормальном положении головы пятно эллиптического мешочка расположена приблизительно вертикально, а пятно сферического – горизонтально.
^ Полукружные каналы имеют названия - верхний (передний, вертикальный), нижний (задний, вертикальный), наружный (горизонтальный, латеральный). Они расположены в трех взаимно перпендикулярных плоскостях и включают гладкую и расширенную (ампулярную) части. Два вертикальных канала частично объединенных общей ножкой, а горизонтальный расположен отдельно. Ампулы горизонтального и переднего каналов открываются в переднюю часть преддверия, тогда как ампула заднего канала – в его заднюю часть. В ампуле каждого перепончатого полукружного канала находятся сенсорные области с рецепторными клетками, которые называются пятна (кристы). В результате действия адекватных раздражителей лабиринта (калоризация, вращение) могут возникать различные рефлексы, связанные с теми или иными группами мышц, например: нистагм глаз, который в конечном итоге зависит от сокращений глазных мышц; отклонение рук, зависящее от изменений тонуса мышц руки; падение, связанное с изменением тонуса мышц туловища конечностей. Эти рефлексы объединяются под названием вестибуло-соматических (от греческого слова soma, что значит тело); возможно, что более точно они могли бы быть обозначаемы как преддверно-мышечные. Вестибуло-соматические рефлексы составляют лишь часть рефлексов, наблюдающихся во время раздражения лабиринта или после него; другую часть составляют так называемые вестибуло-вегетативные рефлексы, к которым относятся: а) рефлексы сердечно-сосудистой системы—учащение или замедление пульса, побледнение покровов или гршеремия их; б) рефлексы, связанные с потоотделением—от едва заметного до обильного, охватывающего лицо, конечности; в) рефлексы с блуждающего нерва—тошнота, рвота. Вестибулярный контроль мышечной деятельности зависит от функционального состояния спортсмена. Например, при перетренировке ухудшается переносимость вращательных проб. Выраженные вегетативные реакции на вращательную пробу при высоком уровне тренированности наблюдается значительно реже, чем у малотренированных спортсменов.
Занятия физическими упражнениями, особенно при которых характерны безопорные движения тела и вращательные движения (в гимнастике, акробатике, фигурном катании и др.) повышают возбудимость и функциональную устойчивость вестибулярной сенсорной системы. Повышение ее возбудимости обеспечивает точное положение тела и его изменений в пространстве. Совершенствование функциональной устойчивости вестибулярной сенсорной системы проявляется в уменьшении реакций, возникающих при ее раздражении.
- 1. Предмет физиологии и основные понятия: функция, механизмы регуляции, внутренняя среда организма, физиологическая и функциональная система. C 1.
- 79. Возрастные особенности развития обмена веществ и энергии. C 110
- 2. Методы физиологических исследований (наблюдение, острый опыт и хронический эксперимент). Вклад отечественных и зарубежных физиологов в развитие физиологии.
- 3. Связь физиологии с дисциплинами: химией, биохимией, морфологией, психологией, педагогикой и теорией и методикой физического воспитания.
- 4. Основные свойства живых образований: взаимодействие с окружающей средой, обмен веществ и энергии, возбудимость и возбуждение, раздражители и их классификация, гомеостазис.
- 5. Мембранные потенциалы – потенциал покоя, местный потенциал, потенциал действия, их происхождение и свойства. Специфические проявления возбуждения.
- 6. Параметры возбудимости. Порог силы раздражения (реобаза). Хронаксия. Изменение возбудимости при возбуждении, функциональная лабильность.
- 7. Общая характеристика организации и функций центральной нервной системы (цнс).
- 8. Понятие о рефлексе. Рефлекторная дуга и обратная связь (рефлекторное кольцо). Проведение возбуждения по рефлекторной дуге, время рефлекса.
- 9. Нервный и гуморальный механизмы регуляции функций в организме и их взаимодействие.
- 10. Нейрон: строение, функции и классификация нейронов. Особенности проведения нервных им пульсов по аксонам.
- 11. Структура синапса. Медиаторы. Синаптическая передача нервного импульса.
- 12. Понятие о нервном центре. Особенности проведения возбуждения через нервные центры (одностороннее проведение, замедленное проведение, суммация возбуждения, трансформация и усвоение ритма).
- 13. Суммация возбуждения в нейронах цнс - временная и пространственная. Фоновая и вызванная импульсная активность нейронов. Следовые процессы под влиянием мышечной деятельности.
- 14. Торможение в цнс (и.М. Сеченов). Пресинаптическое и постсинаптическое торможение. Тормозные нейроны и медиаторы. Значение торможения в нервной деятельности.
- 15. Общий план строения и функции сенсорных систем. Механизм возбуждения рецепторов (генераторный потенциал).
- 16. Адаптация рецепторов к силе раздражения. Корковый уровень сенсорных систем. Взаимодействие сенсорных систем.
- 19. Двигательная сенсорная система. Свойства проприорецепторов. Значение проприорецепторов для управления движениями.
- 20. Слуховая сенсорная система. Слуховые рецепторы, их расположение. Механизм восприятия звука. Значение слуховой сенсорной системы при занятиях спортом.
- 22. Внешнее и внутреннее торможение условных рефлексов по и.П. Павлову. Виды внутреннего торможения. Запредельное торможение.
- 23. Типы внд. Первая и вторая сигнальные системы.
- 24. Структурные особенности и функции вегетативной нервной системы. Локализация ганглиев симпатического и парасимпатического отделов вегетативной нервной системы.
- 25. Симпатическая и парасимпатическая иннервация органов и тканей.
- 26. Понятие о метасимпатической нервной системе. Роль гипоталамуса в регуляции вегетативных функций.
- 28. Нервно-мышечный синапс. Механизмы мышечного сокращения (теория скольжения).
- Механическая реакция целой мышцы при ее возбуждении
- 3.2. Динамическое сокращени
- 30. Регуляция мышечного напряжения (число активных де, частота их импульсации, связь де во времени).
- 4.2. Регуляция частоты импульсации мотонейронов
- 4.3. Синхронизация активности различных де во времени
- 31. Особенности строения и функций гладких мышц.
- 32. Cостав и объем крови. Основные функции крови.
- 33. Эритроциты, их количество и функции. Образование и разрушение эритроцитов. Влияние мышечной работы на количество эритроцитов в крови.
- 34. Гемоглобин и его функции. Кислородная емкость крови и ее значение для мышечной работоспособности.
- 35. Лейкоциты, их количество и функции. Лейкоцитарная формула. Миогенный (рабочий) и пищеварительный лейкоцитоз.
- 36. Тромбоциты, их количество и функции. Механизм свертывания крови. Противосвертывающая система крови. Изменение свертываемости крови при мышечной работе.
- 37. Плазма крови, ее состав. Осмотическое и онкотическое давление плазмы, их изменения при мышечной работе. Буферные системы крови. Реакция крови и ее изменение при мышечной работе.
- 38. Строение сердца. Характеристика функциональных свойств сердечной мышцы: автоматии, возбудимости, проводимости, сократимости и их изменений при спортивной тренировке.
- 39. Сердечный цикл и его фазы в покое и при мышечной работе. Частота сердечных сокращений. Электрокардиография и значение этого метода исследования.
- 40. Систолический (ударный) и минутный объемы сердца в покое и при физической работе.
- 41. Характеристика кругов кровообращения. Свойства и функции артерий, капилляров и вен.
- 42. Давление крови и его показатели в покое и при мышечной работе. Линейная и объемная скорости кровотока в покое и при мышечной деятельности.
- 43. Факторы, обусловливающие движение крови по венам большого круга кровообращения. Влияние венозного притока на сердечный выброс.
- 44. Объем циркулирующей крови и его изменение при мышечной работе.
- 45. Регуляция кровообращения в покое и при мышечной работе. Рефлекторная, нервная и гуморальная регуляция работы сердца.
- 46. Рефлекторная, нервная и гуморальная регуляция просвета сосудов и артериального давления.
- 48. Механизмы вдоха и выдоха. Частота и глубина дыхания в покое и при мышечной деятельности.
- 49. Легочная вентиляция. Минутный объем дыхания в покое и при мышечной работе. Мертвое пространство и альвеолярная вентиляция.
- 50. Обмен газов в легких. Состав вдыхаемого, выдыхаемого, альвеолярного воздуха. Парциальное давление о2 и со2. Диффузионный обмен газов между альвеолярным воздухом и кровью.
- 51. Перенос кислорода и углекислого газа кровью. Диссоциация оксигемоглобина и влияние на нее рН, концентрации со2 и температуры.
- 52. Обмен о2 и со2 между кровью и тканями. Артерио-венозная разница по кислороду в покое и при работе. Коэффициент тканевой утилизации кислорода.
- 53. Регуляция дыхания. Дыхательный центр. Нервная (рефлекторная) и гуморальная регуляция дыхания. Влияние гипоксии и повышенной концентрации со2 на легочную вентиляцию.
- 55. Пищеварение и всасывание в двенадцатиперстной и тонкой кишке (полостное пищеварение). Секреция поджелудочной железы и печени. Пристеночное пищеварение.
- 56. Моторика и секреция толстого кишечника. Всасывание в толстом кишечнике. Влияние мышечной работы на процессы пищеварения.
- 57. Роль белков в организме, суточная потребность в белках. Белковый обмен во время мышечной работы и восстановления.
- 58. Роль углеводов в организме, суточная потребность в углеводах, углеводный обмен при мышечной работе.
- 59. Роль жиров в организме, суточная потребность в жирах. Жиры как источник энергии при мышечной работе.
- 60. Понятие об основном обмене. Зависимость основного обмена от пола, возраста, роста и веса человека. Добавочный расход энергии.
- 61. Терморегуляция. Тепловой баланс. Температурное «ядро» и «оболочка» тела, факторы определяющие колебания их температуры.
- 62. Теплообразование в покое и при мышечной работе. Теплоотдача проведением, излучением и испарением пота. Передача тепла внутри тела. Роль потовых желез в теплоотдаче.
- 63. Теплоотдача при мышечной деятельности в условиях высокой и низкой температуры воздуха. Регуляция температуры тела. Терморецепторы. Центры терморегуляции. Регуляция теплообразования и теплоотдачи.
- 79. Возрастные особенности развития обмена веществ и энергии.
- 80. Возрастные особенности развития высшей нервной деятельности.
- 81. Методика определения порога силы раздражения (реобаза) и хронаксии.
- 82. Методика определения лабильности двигательного аппарата по максимальной частоте движений.
- 83. Методика определения границ поля зрения.
- 84. Методика определения остроты зрения.
- 85. Методика определения вестибуло-соматической устойчивости.
- 89 Измерение артериального давления. По короткову
- 90. Методика определения частоты сердечных сокращений по пульсу. Методы подсчета чсс
- 91 Как рассчитать величину систолического (ударного ) объема крови, если известны минутный объем крови и частота сердечных сокращений? Взаимосвязь этих величин.
- 92. Методика записи экг и расчет чсс по ней- Ритмичность и подсчет сердечных сокращений. Чсс
- 93. Методика определения жизненной емкости легких (фактические и должные величины, их соотношение).