logo
мед візуалізація і обробка / 1 мод ответі мво

Преобразование Фурье.

Преобразование Фурье (символ ℱ) — операция, сопоставляющая одной функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие — гармонические колебания с разными частотами (подобно тому, как музыкальный аккорд может быть выражен в виде амплитуд нот, которые его составляют ).

Преобразование Фурье функции {\displaystyle f}вещественной переменной является интегральным и задаётся следующей формулой:

Операция преобразования Фурье математически записывается следующим образом:

где  - символ прямого преобразования Фурье.

Спектры в теории автоматического управления представляют графически, изображая отдельно их действительную и мнимую части:

На рис. 1 представлено типичное изображение спектра непериодического сигнала.

Рис. 1

Отметим следующие особенности спектра непериодической функции :

  1. Спектр непериодической функции времени непрерывен;

  2. Область допустимых значений аргумента спектра

  1. Действительная часть спектра – четная функция частоты, мнимая часть спектра – нечетная функция, что позволяет использовать одну половину спектра

Преобразование Фурье обратимо, то есть, зная Фурье-изображение, можно определить исходную функцию – оригинал. Соотношение обратного преобразования Фурье имеет следующий вид:

или в сокращенной записи , где  - символ обратного преобразования Фурье. Заметим, что временная функция имеет преобразование Фурье тогда и только тогда, когда:

Обратное преобразование Фурье возможно только в том случае, если все полюсы  - левые.

Рассмотрим примеры определения спектра временных функций.

Пример:

Найдем частотный спектр дельта-функции.

,

так как при 

,

а при   и

.

В итоге,  имеет единичный, равномерный и не зависящий от частоты действительный спектр, а мнимая часть спектра будет равна нулю (см. рис.2).

Рис. 2

  1. Yandex.RTB R-A-252273-3