Конвейер операций, используемый в алгоритме jpeg.
Существенными положительными сторонами алгоритма является то, что:
-
Задается степень сжатия.
-
Выходное цветное изображение может иметь 24 бита на точку.
Отрицательными сторонами алгоритма является то, что:
-
При повышении степени сжатия изображение распадается на отдельные квадраты (8x8). Это связано с тем, что происходят большие потери в низких частотах при квантовании, и восстановить исходные данные становится невозможно.
-
Проявляется эффект Гиббса — ореолы по границам резких переходов цветов.
Как уже говорилось, стандартизован JPEG относительно недавно — в 1991 году. Но уже тогда существовали алгоритмы, сжимающие сильнее при меньших потерях качества. Дело в том, что действия разработчиков стандарта были ограничены мощностью существовавшей на тот момент техники. То есть даже на персональном компьютере алгоритм должен был работать меньше минуты на среднем изображении, а его аппаратная реализация должна быть относительно простой и дешевой. Алгоритм должен был быть симметричным (время разархивации примерно равно времени архивации).
Последнее требование сделало возможным появление таких игрушек, как цифровые фотоаппараты — устройства, размером с небольшую видеокамеру, снимающие 24-битовые фотографии на 10-20 Мб флэш карту с интерфейсом PCMCIA. Потом эта карта вставляется в разъем на вашем лэптопе и соответствующая программа позволяет считать изображения. Не правда ли, если бы алгоритм был несимметричен, было бы неприятно долго ждать, пока аппарат “перезарядится” — сожмет изображение.
Не очень приятным свойством JPEG является также то, что нередко горизонтальные и вертикальные полосы на дисплее абсолютно не видны и могут проявиться только при печати в виде муарового узора. Он возникает при наложении наклонного растра печати на горизонтальные и вертикальные полосы изображения. Из-за этих сюрпризов JPEG не рекомендуется активно использовать в полиграфии, задавая высокие коэффициенты. Однако при архивации изображений, предназначенных для просмотра человеком, он на данный момент незаменим.
Широкое применение JPEG долгое время сдерживалось, пожалуй, лишь тем, что он оперирует 24-битными изображениями. Поэтому для того, чтобы с приемлемым качеством посмотреть картинку на обычном мониторе в 256-цветной палитре, требовалось применение соответствующих алгоритмов и, следовательно, определенное время. В приложениях, ориентированных на придирчивого пользователя, таких, например, как игры, подобные задержки неприемлемы. Кроме того, если имеющиеся у вас изображения, допустим, в 8-битном формате GIF перевести в 24-битный JPEG, а потом обратно в GIF для просмотра, то потеря качества произойдет дважды при обоих преобразованиях. Тем не менее, выигрыш в размерах архивов зачастую настолько велик (в 3-20 раз!), а потери качества настолько малы, что хранение изображений в JPEG оказывается очень эффективным.
Характеристики алгоритма JPEG: Коэффициенты компрессии: 2-200 (Задается пользователем).
Класс изображений: Полноцветные 24 битные изображения или изображения в градациях серого без резких переходов цветов (фотографии).
Симметричность: 1
Характерные особенности: В некоторых случаях, алгоритм создает “ореол” вокруг резких горизонтальных и вертикальных границ в изображении (эффект Гиббса). Кроме того, при высокой степени сжатия изображение распадается на блоки 8х8 пикселов.
Матричный фильтр обработки изображений
Фильтров использующих матрицу свёртки много, ниже будут описаны основные из них. Матрица свёртки – это матрица коэффициентов, которая «умножается» на значение пикселей изображения для получения требуемого результата. Ниже представлено применение матрицы свёртки: div – это коэффициент нормирования, для того чтобы средняя интенсивность оставалась не изменой. В примере матрица имеет размер 3x3, хотя размер может быть и больше.
Фильтр размытия
Наиболее часто используемым фильтром, основанным на матрице свёртки, является фильтр размытия. Обычно матрица заполняется по нормальному (гауссовому закону). Ниже приведена матрица размытия 5x5 заполненная по закону Гауссовского распределения. Коэффициенты уже являются нормированными, так что div для этой матрицы равен одному. От размера матрицы зависит сила размытия. Стоит упомянуть о граничных условиях (эта проблема актуальна для всех матричных фильтров). У верхнего левого пикселя не существует «соседа» с права от него, следовательно, нам не на что умножать коэффициент матрицы. Существует 2 решения этой проблемы: 1. Применение фильтра, только к «окну» изображения, которое имеет координаты левого верхнего угла [kernelSize / 2, kernelSize / 2], а для правого нижнего [width — kernelSize / 2, height — kernelSize / 2]. kernelSize – размер матрицы; width, height – размер изображения. Это не лучший способ, так как фильтр не применяется ко всему изображению. Качество при этом довольно сильно страдает, если размер фильтра велик. 2. Второй метод (дополнение) требует создания промежуточного изображения. Идея в том, чтобы создавать временное изображение с размерами (width + 2 * kernelSize / 2, height + 2 * kernelSize / 2). В центр изображения копируется входная картинка, а края заполняются крайними пикселями изображения. Размытие применяется к промежуточному буферу, а потом из него извлекается результат. Данный метод не имеет недостатков в качестве, но необходимо производить лишние вычисления. Фильтр размытия по Гауссу имеет сложность O(hi * wi * n *n), где hi, wi – размеры изображения, n – размер матрицы (ядра фильтра). Данный алгоритм можно оптимизировать с приемлемым качеством. Квадратное ядро (матрицу) можно заменить двумя одномерными: горизонтальным и вертикальным. Для размера ядра 5 они будут иметь вид: Фильтр применяется в 2 прохода: сначала горизонтальный, а потом к результату вертикальный (или на оборот). Сложность данного алгоритма будет O(hi * wi * n) + O(hi * wi * n) = 2 * O(hi * wi * n), что для размера ядра больше двух, быстрее, чем традиционный метод с квадратной матрицей.
Фильтр улучшения чёткости
Для улучшения четкости необходимо использовать следующую матрицу: Эта матрица увеличивает разницу значений на границах. Div для этой матрицы равен 1. В программе GIMP есть фильтр «Матрица свёртки», который упрощает поиск необходимого Вам матричного преобразования. Более подробную информацию о фильтрах основанных на матрице свёртки вы можете найти в статье «Графические фильтры на основе матрицы скручивания».
Медианный фильтр
Медианный фильтр обычно используется для уменьшения шума или «сглаживания» изображения. Фильтр работает с матрицами различного размера, но в отличие от матрицы свёртки, размер матрицы влияет только на количество рассматриваемых пикселей. Алгоритм медианного фильтра следующий: Для текущего пикселя, пиксели, которые «попадают» в матрицу, сортируются, и выбирается средние значение из отсортированного массива. Это значение и является выходным для текущего пикселя. Ниже представлена работа медианного фильтра для размера ядра равного трём.
Фильтры эрозия и наращивание
Фильтры наращивание и эрозия служат для получения морфологического расширения или сужения соответственно. Проще говоря, для изображений это значит выбор пикселя с максимальной или минимальной интенсивностью из окрестности. В результате наращивания происходит увеличение ярких объектов, а эрозии – увеличение тёмных объектов. Фильтр использует входное изображение и бинарную матрицу. Бинарная матрица определяет форму окрестности. Обычно окрестность имеет круглую форму. Фильтр наращивание может быть использован для увеличения бликов, ярких отражений.
Заключение
В статье были описаны некоторые из фильтров обработки изображения, описаны их алгоритмы и особенности применения.
Анизотро́пная фильтра́ция (англ. Anisotropic Filtering, AF) — в трёхмерной графике метод улучшения качества изображения текстур на поверхностях, сильно наклонённых относительно камеры. Как билинейная и трилинейная фильтрация, анизотропная фильтрация позволяет устранять алиасинг на различных поверхностях, но при этом вносит меньше размытия и поэтому позволяет сохранить бо́льшую детальность изображения. Анизотропная фильтрация требует относительно сложного вычисления, и поэтому только около 2004 года она стала «бесплатной» (не снижающей общей кадровой частоты, либо снижающей её незначительно) в графических платах потребительского уровня.
Принцип действия
Выбирается MIP-текстура, соответствующая разрешению поперёк направления обзора. Берут несколько текселей вдоль направления обзора (в фильтрации 2x — до двух, в 4x — до четырёх, и т. д.) и усредняют их цвета.
Так как пикселей на экране может быть 1 миллион и даже больше, а каждый тексел — это не менее 32 бит, анизотропная фильтрация требует огромной пропускной способности видеопамяти (десятки гигабайт в секунду). Столь большие требования к памяти уменьшают за счёт сжатия текстур и кэширования.
-
отдельном окне и посмотреть исходник: demo.svg.
-
В CSS-анимации, для задания траектории или скорости передвижения.
Yandex.RTB R-A-252273-3
- Преобразование Фурье.
- Кривые Безье.
- Кривая всегда находится внутри выпуклой оболочки, образованной опорными точками:
- Математика
- Jpeg алгоритм сжатия изображений.
- Конвейер операций, используемый в алгоритме jpeg.
- Jpeg алгоритм сжатия изображений.
- Конвейер операций, используемый в алгоритме jpeg.
- Возможности масштабирования