Кардиосклерозе
Вариант опытов | ЧСС в минуту | АД систолическое, мм рт. ст. | Порог фибрилляции желудочков, иА |
Контроль | 412±9 | 145±9 | 6,4±0,2 |
Постинфарктный кардиосклероз | 398±12 | 100±9 | 2,9±0,2 |
Адаптация | 401±9 | 126±5 | 6,7±0,4 |
Постинфарктный кардио- |
|
|
|
склероз + адаптация | 358±15 | 108±6 | 6,3±0,5 |
Примечание. В каждом варианте было 11 крыс.
152
частоты сердечных сокращений, но в условиях острых опытов закономерно сопровождался снижением систолического АД на 40—45 мм рт. ст., т. е. больше чем на 25%. Снижение давления не устраняется адаптацией к коротким стрессорным воздействиям. Видно далее, что постинфарктный кардиосклероз закономерно сопровождается падением порога фибрилляции сердца более чем в 2 раза. Это явление полностью устраняется адаптацией к коротким стрессорным воздействиям.
Влияние изучавшихся факторов на отрицательно хронотропный эффект блуждающего нерва и эктопическую активность сердца во время вагуснон брадикардии представлено в табл. 16 и 17. Из данных табл. 16 следует, что при пороговой силе раздражения блуждающего нерва оба использованных фактора не оказали
Таблица 16. Отрицательный хронотропный эффект блуждающего нерва при постинфарктпом кардиосклерозе
Вариант опытов | Исходная ЧСС | Величина порога, В | — Δ ЧСС в минуту | ||
сила раздражения в пороговых единицах | |||||
1 | 2 | 4 | |||
Контроль | 412±9 | 0,25±0,02 | 38±6 | 105±20 | 151±20 |
Постинфарктный кардиосклероз | 398±12 | 0,31±0,02 | 40±7 | 130±20 | 194+20 |
Адаптация | 401±9 | 0,21±0,04 | 33±3 | 47±9 | 105±14 |
Постинфарктный кардиосклероз + адаптация | 358±14 | 0,27±0,03 | 29±4 | 55±9 | 96±10 |
Примечание. В каждом варианте было 11 животных. |
Таблица 17. Эктопическая активность сердца во время вагусной брадикардии при постинфарктном кардиосклерозе
Вариант опытов | Общее число животных с экстрасистолами | Число экстрасистол за 30 с при различной силе раздражения блуждающего нерва | Суммарное число экстрасистол для всей группы | |||
1 порог | 2 порога | 3 порога | 4 порога | |||
Постинфарктный кардиосклероз (11) | 9 | 40 | 65 | 194 | 262 | 561 |
Постинфарктный кардиосклероз + адаптация (11) | 5 | 0 | 1 | 85 | 80 | 166 |
Примечание. Цифры в скобках — число животных; у контрольных животных, а также у животных, адаптированных к коротким стрессорным воздействиям, экстрасистолы во время стимуляции блуждающего нерва в этих экспериментах яе возникали; в каждом варианте было 11 животных. |
153
какого-либо влияния на величину отрицательного хронотропного эффекта. Во всех группах частота сокращений при раздражении блуждающего нерва снижалась на 30—40 в мин. При большей силе раздражения, равной 2 и 4 порогам, возникали достоверные различия между группами. Так, при экспериментальном кардиосклерозе наблюдалась определенная тенденция к увеличению отрицательного хронотропного эффекта блуждающего нерва; адаптация к коротким стрессорным воздействиям, напротив, в 1,5—
2 раза уменьшала величину отрицательного хронотропного эффекта у интактных животных и животных с постинфарктным кардиосклерозом.
Таким образом, тенденция к увеличению отрицательного хронотропного эффекта блуждающего нерва, наблюдавшаяся при кардиосклерозе, оказывалась устраненной адаптацией.
В этих экспериментах раздражение блуждающего нерва различной силы током в течение 30 с не приводило к возникновению экстрасистол у контрольных, а также у адаптированных к коротким стрессорным воздействиям животных. В соответствии с этим в табл. 17 представлены данные об эктопической активности, т. е. о числе экстрасистол у двух серий животных с постинфарктным кардиосклерозом, а именно у животных, не подвергавшихся после воспроизведения инфаркта каким-либо дополнительным воздействиям, и у животных, по отношению к которым была применена после этого экспериментальная терапия посредством адаптации к коротким стрессорным воздействиям. Во всех случаях приведено число экстрасистол, наблюдавшихся при раздражении блуждающего нерва в течение 30 с нарастающей силы током, использованным в наших опытах. Из данных табл. 17 следует, что уже при пороговой силе тока у животных с постинфарктным кардиосклерозом в отличие от контрольных появлялось значительное число экстрасистол — 40 на всю группу обследованных крыс. При силе раздражения, равной 2 порогам, число экстрасистол составляло 65,
3 порогам — 194, 4 порогам — 262. Суммарное число экстрасистол для данной группы животных за все 4 периода раздражения составляло 561. Этот факт, свидетельствующий о повышенной эктопической активности сердца при постинфарктном кардиосклерозе, достаточно известен. Главный результат, вытекающий из материалов табл. 17, заключается в том, что адаптация животных с сформировавшимся постинфарктным кардиосклерозом к коротком стрессорным воздействиям в 3 раза уменьшает эктопическую активность сердца — суммарное число экстрасистол составляет уже не 561, а 166. Защитный эффект адаптации к коротким стрессорным воздействиям несомненно обусловлен тем, что этот фактор в 2 раза уменьшил отрицательный хронотропный эффект раздражения блуждающего нерва (см. табл. 16) и, возможно, зависит от прямого антиаритмического действия стресс-лимитирующих систем, активированных адаптацией.
Таким образом, результаты экспериментов однозначно свидетельствуют, что адаптация к коротким стрессорным воздействиям
154
устраняет нарушения электрической стабильности сердца, а именно повышение порога фибрилляции желудочков и усиление эктопической активности, характерные для постинфарктного кардиосклероза.
Для понимания этого результата существенно, что в наших экспериментах объектом исследования служили животные, взятые через 1 мес после воспроизведения инфаркта. Таким образом, стресс и ишемия не могли играть какой-либо роли в возникновении обнаруженных нарушений электрической стабильности сердца при постинфарктном кардиосклерозе и соответственно положительный результат экспериментальной терапии не может быть объяснен антиишемическим или антистрессорным эффектом. Снижение порога фибрилляции сердца и усиление эктопической активности при постинфарктном кардиосклерозе связано с существованием в стенке левого желудочка достаточно большого соединительнотканного рубца. Показано, что в самом рубце и особенно в его краевой, пограничной зоне всегда имеются вкрапления кардиомиоцитов, переживших острую ишемию, которые сохраняют биоэлектрическую активность и близкую к норме гистологическую структур/. Установлено, что эти клетки характеризуются сниженным потенциалом покоя, уменьшением амплитуды и скорости нарастания потенциала действия, а также разнонаправленными и значительными изменениями длительности ПД и рефрактерной фазы [Abildskov Т., 1980].
A'priori можно полагать, что этот комплекс изменений составляет основу неравномерного проведения возбуждения в элементах проводящей системы и сократительного миокарда и таким образом может играть роль в формировании reentry и фибрилляции сердца при возникновении преждевременного импульса из эктопического очага. В наших экспериментах такой импульс создавался путем преждевременного электрического раздражения верхушки сердца, и сила его, необходимая для того, чтобы вызвать обратимую фибрилляцию у животных с постинфарктным кардиосклерозом, была в 2 раза меньше, чем в контроле. Это полностью соответствует результатам клинико-физиологических исследований, в которых сохранившиеся клетки пограничной зоны при постинфарктном кардиосклерозе у людей были идентифицированы как место возникновения желудочковой тахикардии у больных хронической ИБС.
Главное положение, вытекающее из представленных данных, заключается в том, что экспериментальная терапия с помощью адаптации к коротким стрессорным воздействиям устраняет повышение эктопической активности и нарушения электрической стабильности сердца при постинфарктном кардиосклерозе.
Этот регуляторный антиаритмический эффект осуществляется при отсутствии стресса и ишемии. Он с большой долей вероятности может быть оценен как результат повышения активности стресс-лимитирующих систем, действующих на уровне сердца и мозга.
155
Для того чтобы более конкретно представить себе роль изменений, развертывающихся на уровне мозга при адаптации к стрессорным ситуациям, в защитном эффекте такой адаптации следует учитывать приведенные выше данные J. Skinner и соавт. о роли центральных нервных и прежде всего кортикальных механизмов в патогенезе аритмий и фибрилляции сердца. Эти сообщения дают основание полагать, что одно из звеньев кардиопротекторного антиаритмического эффекта адаптации состоит в ограничении возбудимости сенсомоторной и, в частности, фронтальной коры, которая при определенных ситуациях может индуцировать аритмии и фибрилляцию сердца. Для того чтобы оценить реальность защитного действия адаптации к стрессорным ситуациям на кортикальном уровне, М. Ю. Макаровой, О. X. Коштоянцем, Р. И. Кругликовым совместно с нами было изучено влияние такой адаптации на хемореактивные свойства нейронов сенсомоторной коры, т. е. на их чувствительность к ацетилхолину и норадреналину.
Крыс в течение 2 нед адаптировали к кратковременным иммобилизационным стрессорным воздействиям. Затем в острых опытах у животных, обездвиженных α-тубокурарином, на черепе крепили миниатюрный микроманипулятор, с помощью которого трехствольный структурированный микроэлектрод погружался на уровень IV—V слоев сенсомоторной коры мозга. Стволы электрода заполняли ЗМ раствором NaCl (регистрирующий электрод), 2М раствором ацетилхолина (рН 4) и 0,2М раствором битартрата норадреналина. Подведение нейромедпаторов к нейронам осуществлялось током фореза 30—40 нА в течение 30 с, сдерживающий ток не превышал 4—5 нА. Импульсную активность регистрировали до (в течение 1,5 мин), во время микроионофореза веществ (30 с) и после подведения веществ (2 мин). Для анализа использовались 60-секундные интервалы записи импульсной активности до и после микроионофоретического подведения веществ. Критерием реакции нейрона на подведение нейромедиаторов служило изменение частоты импульсации нейронов не менее чем на 20%. Всего зарегистрировано 111 нейронов у контрольных и 48 нейронов у животных, адаптированных к стрессорным воздействиям.
Результаты этих исследований показали, что по относительному числу активирующихся, ареактивных и тормозящихся при подведении ацетилхолина или норадреналина нейронов адаптированные животные резко отличаются от неадаптированных (контрольных) . Так, показано, что относительное число ареактивных нейронов при действии ацетилхолина у адаптированных животных составляло 56±7%, т. е. было увеличено по сравнению с контролем (24±4%) примерно в 2 раза (Р<0,01). Относительное число нейронов, реагирующих на ацетилхолин активацией или торможением, у адаптированных животных было достоверно ниже, чем в контроле на 39—56% (Р<0,05). Так, у них активировалось 25±6% нейронов (при 42±5% в контроле) и тормозилось 15± ±5% нейронов (при 34±4% в контроле). Сходные соотношения наблюдались и в реакциях нейронов на подведение норадреналина.
Более глубокая оценка влияния адаптации на хемореактивные свойства нейронов требует учета и ряда других показателей:
156
Таблица 18. Особенности реакций нейронов сенсомоторной коры
- Ф. 3. Меерсон м. Г. Пшенникова адаптация к стрессорным ситуациям и физическим нагрузкам москва «медицина» 1988
- Предисловие
- Введение
- Глава 1. Механизм адаптации к физическим нагрузкам
- Основные стадии адаптации к физическим нагрузкам. Структурный «след» адаптации
- Адаптация к физическим нагрузкам
- Глава 2. Защитные эффекты адаптации к физическим нагрузкам. «цена» адаптации
- Предупреждение стрессорных повреждений
- Мышцы левого желудочка сердца адаптированных и контрольных крыс после перенесенного стресса
- Профилактика ишемических повреждений сердца
- Уменьшение факторов риска сердечно-сосудистых заболеваний
- Лечение и реабилитация
- Сходство положительных перекрестных эффектов адаптации к высотной гипоксии и физическим нагрузкам
- Папиллярных мышц левого желудочка сердца крыс при эмоционально-болевом стрессе (м±m)
- Отрицательные перекрестные эффекты адаптации
- Глава 3. Адаптация к стрессорным ситуациям и ее защитные эффекты
- Повреждающая стрессорная ситуация и адаптация к ней
- Патогенез стрессорных повреждений сердца и предупреждение их при помощи адаптации
- Стрессорное нарушение противоопухолевого иммунитета и его предупреждение при помощи предварительной адаптации1
- Глава 4. Механизм адаптации к стрессорным ситуациям и стресс-лимитирующие системы организма
- Основные изменения нейрогуморальной регуляции при адаптации к повторным стрессорным воздействиям
- Стрессе (м±т)
- Стресс-лимитирующие системы организма
- Перекрестные эффекты адаптации к стрессорным ситуациям
- Глава 5. Предупреждение фибрилляции сердца при помощи адаптации к стрессорным ситуациям и другим факторам среды
- Стресс в этиологии и патогенезе ишемической болезни сердца
- И фруктозо-1,6-дифосфатальдолазы в печени крыс (м±m) при эмоционально-болевом стрессе
- Нарушения нервной регуляции в патогенезе фибрилляции сердца и острой сердечной смерти
- Предупреждение аритмий и фибрилляции сердца при помощи адаптации к стрессорным ситуациям, физическим нагрузкам и высотной гипоксии
- Кардиосклерозе
- Контрольных и адаптированных крыс на микроионофоретическое подведение ацетилхолина и норадреналина
- Кардиосклерозе
- Глава 6. Предупреждение сердечных аритмий при помощи метаболитов и активаторов стресс-лимитирующих систем
- Активаторы гамк-ергической системы и синтетические аналоги серотонина
- Воздействиям (m±m)
- Фибрилляции желудочков п эктопическую активность сердца при
- Свободнорадикальное окисление в патогенезе ишемических и стрессорных повреждений миокарда и кардиопротекторное действие антиоксидантов1
- Свободнорадикальное окисление в патогенезе аритмий и предупреждение фибрилляции сердца антиоксидантами
- И содержание катехоламинов (мкг/г) в сердце крыс (m±m) при стрессе
- И содержание катехоламинов (мкг/г) в надпочечниках крыс (m±m) при стрессе
- Суправентрикулярных (свэ) и желудочковых экстрасистол (жэ) в течение суток у 21 больного нейроциркуляторной дистонией
- Заключение
- Список литературы
- Дополнительный список литературы
- Оглавление
- Электронное оглавление