27 Комбинативная изменчивость
Это изменчивость, возникающая в результате перекомбинирования генов в процессе полового размножения. По Дарвину — это изменчивость вследствие скрещивания. Ее еще называют рекомбинативная изменчивость. Комбинативная изменчивость есть следствие трех процессов:
независимого расхождения хромосом при мейозе;
случайного сочетания хромосом при оплодотворении;
рекомбинации генов при кроссинговере.
Гены при комбинативной изменчивости не изменяются, но возникают новые их сочетания, что и приводит к появлению организмов с новыми фенотипами. Особь гетерозиготная по п одинаковым генам дает 2" типов гамет. Число различных фенотипов при моногибридном скрещивании и при полном доминировании равно двум, при дигибридном — 4, при тригибридном — 8 (23), при десятигибридном (п = 10) — 1024. В гаметах эукариотичес-ких организмов — десятки-сотни тысяч генов, и они могут дать чудовищное количество вариантов при скрещивании.
Комбинативная изменчивость имеет колоссальное значение для эволюционных процессов:
Она постоянно изменяет признаки.
При взаимодействии неаллельных генов создает новые признаки.
Повышает жизнеспособность потомства.
Снижает и нейтрализует вредное действие мутаций.
Поэтому в популяциях людей имеют место отклонения от панмиксии в двух направлениях: 1) Люди, состоящие между собой в родстве, вступают в брак чаще, чем при случайном подборе – инбридинг – инбирентные (кровнородственные браки). 2) Люди вступают в брак чаще при случайном подборе пар, чем при родственном бракосочетании – аутобридинг. Инбридные браки имеют большое значение в медицинском плане. Т.к. вероятность того, что оба супруга обладают одинаковыми рецессивными генами гораздо выше, если супруги состоят между собой в родстве, особенно близком. Родство закономерно. С медицинской точки зрения близкими по генетическому эффекту считаются избирательные браки по фенотипическому признаку. Если выбор брачного партнера оказывает влияние на генотип потомка – ассортивные браки. Люди, схожие фенотипические, чаще вступают в брак, чем при случайной подборке пар – положительные ассортивные браки, если реже – отрицательные. Примерами могут служить браки между глухонемыми, людьми высокого роста, людей с одинаковым цветом кожи. Отрицательные ассортивные браки между рыжеволосыми людьми. Близкородственные браки часто встречались на ранних этапах развития человечества. Выделяют 3 группы инбридинга: 1. между родственниками первого родства 2. близкородственные браки изолированных популяций 3. поощряемые близкородственные браки по социальным, религиозным и другим соображениям. Инцестные (запретные) браки между родственниками первого родства: мать-сын, отец-дочь, брат-сестра. Имели место в Египте, династии Птолемеев. В ряде восточных стран, род Ивана Грозного (начиная с Ивана Калиты – несколько подобных браков). Правовые ограничения: браки между двоюродными родственниками, племянниками и тетями, племянницами и дядями - разрешены. Хотя в некоторых странах есть ограничения. США и Великобритании – дядя-племянница, полудядя-племянница – запрещены. В США двоюродные – запрещены, в Великобритании – разрешены. Близкородственные браки в изолированных территориях (изолятах), в т.ч. и религиозных изолятах, неизбежны, потому что в противном случае популяция вымирает. В больших неизолированных популяциях близкородственные браки составляют 1% в городе и 3% в селах, до троюродных. Близкородственные браки поощряются среди евреев, в восточных странах. Там до 12%. В Самаркандской области Дядя-племянница 46 Племянник-тетя 14 Двоюродные 42 Инцестные 2 Коэффициент инбридинга – средняя идентичная по происхождению. США, католики – 0,00009 Израиль и Иордания – 0,432 Индия – 0,32 Япония – 0,0046 В Индии половина браков заключается между родственниками – детская смертность при любом достатке составляет 50%. Генетический эффект близкородственных браков: редкие аутосомно-рецесивные
28 Генеалогический метод Этот метод основан на прослеживании какого-либо нормального или патологического признака в ряде поколений с указанием родственных связей между членами родословной. Генеалогический метод является основным связующим звеном между теоретической генетикой человека и применением ее достижений в медицинской практике. Суть этого метода состоит в том. чтобы выяснить родственные связи и проследить наличие нормального или патологического признака среди близких и дальних родственников в данной семье. Сбор сведений начинается от пробанда. Пробандом называется лицо, родословную которого необходимо составить. Им может быть больной или здоровый человек – носитель какого-либо признака или лицо, обратившееся за советом к врачу-генетику. Братья и сестры пробанда называются сибсами. Обычно родословная составляется по одному или нескольким признакам. Метод включает два этапа: •сбор сведений о семье •генеалогический анализ Для составления родословной проводят краткие записи о каждом члене родословной с точным указанием его родства по отношению к пробанду. Затем делают графическое изображение родословной. Генеалогический метод тем информативнее, чем больше имеется достоверных сведений о здоровье родственников больного. При собирании генетических сведений и их анализе надо иметь в виду, что признак может быть выражен в разной степени, иногда незначительной – микропризнаки. После составления родословной начинается второй этап – генеалогический анализ, целью которого является установление генетических закономерностей: •в начале требуется установить имеет ли признак наследственный характер; если какой-либо признак встречался в родословной несколько раз, то можно думать о его наследственной природе; однако это может быть и не так, например, какие-то внешние факторы или профессиональные вредности могут вызывать сходные заболевания у членов одной семьи •в случае обнаружения наследственного характера признака необходимо установить тип наследования: доминантный, рецессивный, сцепленный с полом Основные признаки аутосомно-доминантного наследования: •проявление признака в равной мере у представителей обоих полов •наличие больных во всех поколениях (по вертикали) при относительно большом количестве сибсов •наличие больных и по горизонтали (у сестер и братьев пробанда) •у гетерозиготного родителя вероятность рождения больного ребенка (если второй родитель здоров) составляет 50% Следует учесть, что при доминантном типе наследования может быть пропуск в поколениях за счет слабо выраженных, «стертых» форм заболевания (малая эксперссивность мутантного гена) или за счет его низкой пенетрантности (когда у носителя донного гена признак отсутствует). Основные признаки аутосомно-рецессивного наследования: •относительно небольшое число больных в родословной •наличие больных «по горизонтали» (болеют сибсы – родные, двоюродные) •родители больного ребенка чаще фенотипически здоровы, но являются гетерозиготными носителями рецессивного гена •вероятность рождения больного ребенка составляет 25% Рецессивный признак проявляется тогда, когда в генотипе имеются оба рецессивных аллеля. При проявлении рецессивных заболеваний нередко встречается кровное родство родителей больных. Следует иметь в виду, что наличие отдаленного родства бывает неизвестно членам семьи. Приходиться учитывать косвенные соображения , например, происхождение из одного и того же малонаселенного пункта, или принадлежность к какой-либо изолированной этнической или социальной группе. Основные признаки наследования, сцепленного с полом: •заболевания, обусловленные геном, локализованным в Х-хромосоме, могут быть как доминантными, так и рецессивными •при доминантном Х-сцепленном наследовании заболевание одинаково проявляется как у мужчин, так и у женщин и в дальнейшем может передаваться по потомству (в этом случае женщина может передавать этот ген половине дочерей и половине сыновей) •при рецессивном наследовании заболеваний, сцепленными с Х-хромосомой, как правило страдают мужчины (гетерозиготная носительница – мать – передает мутантный ген половине сыновей, которые будут больны и половине дочерей, которые оставаясь фенотипически здоровыми, как и мать, тоже являются носительницами и передают рецессивный ген вместе с Х-хромосомой следующему поколению) 29 Близнецовый метод Это один из наиболее ранних методов изучения генетики человека, однако он не утратил своего значения и в настоящее время. Близнецовый метод был введен Ф.Гамильтоном, который выделил среди близнецов две группы: •одняйцевые (монозиготные) •двуяйцевые (дизиготные) Монозиготные близнецы при нормальном эмбриональном развитии всегда одного пола. Дизиготные близнецы рождаются чаще (2/3 общего количества двоен), они развиваются из двух одновременно созревших и оплодотворенных яйцеклеток. Такие близнецы могут быть и однополые и разнополые. С генетической точки зрения они сходны как обычные сибсы, но у них большая общность факторов среды во внутриутробном (пренатальном) и частично в постнатальном периодах. Если изучаемый признак проявляется у обоих близнецов пары, их называют конкордантными. Конкордантность – это процент сходства по изучаемому признаку. Отсутствие признака у одного из близнецов – дискордантность. Близнецовый метод используется в генетике человека для того, чтобы оценить степень влияния наследственности и среды на развитие какого-либо нормального или патологического признака. Для оценки роли наследственности в развитии того или иного признака производят расчет по формуле: Н = (% сходства ОБ - % сходства ДБ) / (100 - % сходства ДБ) где: Н- коэффицент наследственности ОБ – однояйцевые близнецы ДБ – двуяйцевые близнец •При Н = 1 признак полностью определяется наследственным компонентом •При Н = 0 признак определяется влиянием среды •При Н = близкий к 0,5 признак определяется примерно одинаковым влиянием наследственности и среды на формирование признака Метод дерматоглифики Дерматоглифка – это изучение рельефа кожи на пальцах, ладонях и подошвенных поверхностях стоп, который образован эпидермальными выступами – гребнями, которые образуют сложные узоры. Ф. Гальтон предложил предложил классификацию этих узоров, позволившую использовать этот метод для идентификации личности в криминалистике. Разделы дерматоглифики: •дактилоскопия – изучение узоров на подушечках пальцев •пальмоскопия – изучение рисунка на ладонях •плантоскопия – изучение дерматоглифики подошвенной поверхности стопы Дактилоскопия. Гребни на коже пальцев рук соответствуют сосочкам дермы, поэтому их называют также папиллярными линиями, рельеф этих выступов повторяет пласт эпидермиса. Межсосочковые углубления образуют бороздки. Закладка узоров происходит между 10 и 19 неделями внутриутробного развития; у 20 недельных плодов уже хорошо различимы формы узоров. Формирование папиллярного рельефа зависит от характера ветвления нервных волокон. Полное формирование деталей строения тактильных узоров отмечается к шести месяцам, после чего они остаются неизменными до конца жизни. Дерматоглифические исследования имеют важное значение в определении зиготности близнецов, в диагностике некоторых наследственных заболеваний, в судебной медицине, в криминалистике для идентификации личности. Пальмоскопия. Ладонный рельеф очень сложный, в нем выделяют ряд полей, подушечек и ладонных линий. У правшей более сложные узоры встречаются на правой руке, у левшей – на левой. Индивидуальные особенности кожных узоров наследственно обусловлены. Это доказано многими генетическими исследованиями, в частности, на монозиготных близнецах. Обширные исследования по изучению особенностей дерматоглифики проведены у нас в стране Т.Д. Гладковой (1996), а по наследственной обусловленности кожных узоров – И.С. Гусевой (1970, 1980). на основании этих работ был сделан вывод, что количественные показатели рельефа гребневой кожи программируются полигенной системой, включающей небольшое число аддитивно действующих генов. гены гребневой кожи проявляют свой морфогенетический эффект, влияя на степень ветвления нервного волокна, и фенотипически определяют гребневую плотность. На формирование дерматоглифических узоров могут оказывать влияние некоторые повреждающие факторы на ранних стадиях эмбрионального развития. 30 Цитогенетический метод Принципы цитогенетических исследований сформировались в течение 20-30-х годов на классическом объекте генетики – дрозофиле и на некоторых растениях. метод основан на микроскоическом исследовании хромосом. Для идентификации хромосом применяют количественный морфометрический анализ. С этой целью проводят измерение длины хромосомы в микрометрах (микроскопия хромосом производится в остановленной фазе митоза посредством колхицина и отброшенными посредством гипотонического раствора в результате чего хромосомы лежат свободно), определяют также соотношение длины короткого плеча к длине всей хромосомы (центромерный индекс). В 1960 году была разработана первая классификация хромосом человека (Денверская). в основу ее были положены особенности величины хромосом и расположение первичной перетяжки. По форме и общим размерам все аутосомы человека подразделяются на 7 групп, обозначаемых латинскими буквами: A, B, C, D, E, F, G. Все хромосомы имеют порядковые номера. Наиболее крупная пара гомологичных хромосом имеет №1, следующая - №2 и т.д. Половые хромосомы - крупная X и мелкаяY – выделяются отдельно. В последнее время разрабатываются автоматические системы для измерения и количественного анализа хромосом. Однако идентификация хромосом только по указанным признакам встречает большие затруднения. В 1968-1970 гг. были опубликованы работы шведского генетика Касперссона, который применил для изучения хромосом флюоресцентные красители, в частности акрихин-иприт и его производные. Последующее изучение в люминесцентном микроскопе показало, что хромосомы не дают равномерного свечения по длине. В ней выявляется несколько светящихся полос, совпадающих с локализацией структурного гетерохромтина. После удаления их хромосом ДНК они теряют почти полностью способность к флюоресценции. Если после денатурации ДНК, вызванной нагреванием и некоторыми другими факторами, провести затем ее ренатурацию – восстановление исходной двунитчатой структуры, а затем окрасить хромосомы красителем Гимзы, то в них выявляется четкая дифференцировка на темноокрашенные и светлые полосы – диски. Последовательность расположения этих дисков, их рисунок – строго специфичен для каждой хромосомы. В результате различных вариантов метода удается выявить центромерный и околоцентромерный гетерохроматин (С-диски), диски расположенные по длине хромосом (соответственно Гимзы-диски, G-диски). Захаровым был разработан перспективный метод изучения хромосом. В основу его положен процесс неодновременной репликации хромосом: одни участки реплицируются раньше, у других этот процесс задерживается и репликация происходит значительно позднее. Неодновременно идет процесс спирализации хромосом, вступающих в митоз. Однако, к тому моменту, когда хромосомы вступают в метафазу, успевет завершиться процесс выравнивания этих различий, и степень конденсации метафазных хромосом становится одинаковой. Было показано, сто можно задерджать этот процесс путем введения 5-бромдезоксиуридина (5-БДУ), который является аналогом тимидина – предшественника ДНК. Если 5-БДУ вводить в конце S-периода. то он включается в синтез ДНК, то есть участки хромосом, где находится это вещество, остаются слабоокрашенными, так как была задержана спирализация. Рано редуплицировавшиеся участки хромосомы, успевшие спирализоваться, интенсивно окрашиваются (Р-диски). Расположение темных и светлых дисков при этом методе противоположно тому, что наблюдается при G-окраске. Сравнительный анализ различных методов окраски показал, что один и тот же диск может выделяться как светлый неокрашенный или темноокрашенный, но порядок расположения дисков идентичен при и всех методиках. Следовательно, не вызывает сомнения, что их расположение и последовательность имеют закономерный характер. специфичный для каждой хромосомы. Если нарушения касаются половых хромосом, то методика упрощается. В этом случае проводится не полное кариотипирование, а применяется метод исследования полового хроматина в соматических клетках. Половой хроматин – это небольшое дисковидное тельце, интенсивно окрашивающееся гематоксилином и другими основными красителями. Они обнаруживаются в интерфазных клеточных ядрах млекопитающих и человека. непосредственно под ядерной мембраной. Определение полового хроматина нашло применение в судебной медицине, когда требуется по пятнам крови установить половую принадлежность, при анализе. когда надо установить, мужчине или женщине принадлежит найденная часть трупа, даже спустя довольно большой срок после смерти. При трансплантации тканей тельце полового хроматина может служить своеобразной меткой (если донор и реципиент разных полов). Анализ дает возможность проследить приживление или рассасывание трансплантата. 31 Популяционно-статистический метод
С помощью популяционно-статистического метода изучают наследственные признаки в больших группах населения, в одном или нескольких поколениях. Существенным моментом при использовании этого метода является статистическая обработка получаемых данных. Этим методом можно рассчитать частоту встречаемости в популяции различных аллелей гена и разных генотипов по этим аллелям, выяснить распространение в ней различных наследственных признаков, в том числе заболеваний. Он позволяет изучать мутационный процесс, роль наследственности и среды в формировании фенотипического полиморфизма человека по нормальным признакам, а также в возникновении болезней, особенно с наследственной предрасположенностью. Этот метод используют и для выяснения значения генетических факторов в антропогенезе, в частности в расообразовании.
При статистической обработке материала, получаемого при обследовании группы населения по интересующему исследователя признаку, основой для выяснения генетической структуры популяции является закон генетического равновесия Харди — Вайнберга. Он отражает закономерность, в соответствии с которой при определенных условиях соотношение аллелей генов и генотипов в генофонде популяции сохраняется неизменным в ряду поколений этой популяции (см. разд. 10.2.3, т.2). На основании этого закона, имея данные о частоте встречаемости в популяции рецессивного фенотипа, обладающего гомозиготным генотипом (аа), можно рассчитать частоту встречаемости указанного аллеля (а) в генофонде данного поколения. Распространив эти сведения на ближайшие поколения, можно предсказать частоту появления в них людей с рецессивным признаком, а также гетерозиготных носителей рецессивного аллеля.
Математическим выражением закона Харди — Вайнберга служит формула (рА. + qa)2, где р и q — частоты встречаемости аллелей А и а соответствующего гена. Раскрытие этой формулы дает возможность рассчитать частоту встречаемости людей с разным генотипом и в первую очередь гетерозигот — носителей скрытого рецессивного аллеля: p2AA + 2pqAa + q2аа. Например, альбинизм обусловлен отсутствием фермента, участвующего в образовании пигмента меланина и является наследственным рецессивным признаком. Частота встречаемости в популяции альбиносов (аа) равна 1:20 000. Следовательно, q2 = 1/20 000, тогда q = 1/141, up = 140/141. В соответствии с формулой закона Харди — Вайнберга частота встречаемости гетерозигот = 2pq, т.е. соответствует 2 х (1/141) х (140/141) = 280/20000 = 1/70. Это означает, что в данной популяции гетерозиготные носители аллеля альбинизма встречаются с частотой один на 70 человек.
Анализ частот встречаемости разных признаков в популяции в случае их соответствия закону Харди — Вайнберга позволяет утверждать, что признаки обусловлены разными аллелями одного гена. Так, например, установлено, что в США 29,16% белого населения имеют группу крови М, 49,58%—группу MN, 21,26%—группу N. Эти частоты разных фенотипов соответствуют формуле p2М + 2pqMN + q2N. Следовательно, эти три варианта признака обусловлены сочетанием двух аллелей одного гена, взаимодействующих по типу кодоминирования: группа М — LmLm, группа N — LnLn, группа MN—LmLn.
В том случае, если ген в генофонде популяции представлен несколькими аллелями, например ген группы крови системы АВО, соотношение различных генотипов выражается формулой (pIA + qIB + rI0) 2.
Харди ‒ Вайнберга закон, закон популяционной генетики, устанавливающий соотношение между частотами генов и генотипов в популяции со свободным скрещиванием. Сформулирован в 1908 независимо английским математиком Г. Харди и немецким врачом В. Вайнбергом. Закон утверждает, что если численность популяции диплоидных организмов настолько велика, что можно пренебречь случайными флуктуациями частот генов (генетико-автоматические процессы), если в ней отсутствуют мутации, миграция и отбор (по изучаемому гену), то частоты генотипов AA, Aa и aa в популяции остаются одинаковыми из поколения в поколение (после первого) и удовлетворяют соотношениям Харди ‒ Вайнберга: p2(AA): 2pq (Aa): q2(aa), где А и а ‒ аллели несцепленного с полом гена, p ‒ частота аллеля А, q ‒ частота аллеля а. Х. ‒ В. з. распространяется и на случай многоаллельного гена. В популяциях полиплоидных организмов (а также в популяциях диплоидов ‒ для генов, сцепленных с полом) соответствующие соотношения устанавливаются лишь через большое число поколений. Если в популяции выполняются соотношения Х. ‒ В. з., то это не свидетельствует ещё об отсутствии популяционно-генетических процессов. Например, скрещивание близкородственных особей (инбридинг), способствующее увеличению доли гомозигот в популяции, в сочетании с отбором против гомозигот может привести к частотам генотипов, удовлетворяющим соотношениям Х. ‒ В. з. Сопоставление фактически наблюдаемых частот генотипов с теоретически ожидаемыми по Х. ‒ В. з. в ряде случаев позволяет оценить частоты аллелей, вычленить влияющие на них факторы и получить количественные характеристики отбора, неслучайности скрещивания, миграции, случайных флуктуаций и т.п. Представление о генетическом равновесии в популяциях, впервые нашедшем выражение в Х. ‒ В. з., составляет основу современной концепции о взаимодействии популяционно-генетических процессов.
32 ---
33 ---
34---
- 3 Значение генетики для медицины Методы изучения наследственности человека.
- 4 Геномика,протеомика,биоинформатика Науки нового века
- Аллельные гены
- Гомозиготные, гетерозиготные организмы
- 8 Взаимодействие неаллельных генов
- Комплиментарность
- Эпистаз
- Полимерия
- 9 Пенетрантность и экспрессивность
- Что такое х-сцепленное наследование?
- Синтез белков
- Генные мутации. Последствия мутаций. Методы выявления генных мутаций
- 2)Нечетная(3n, 7n, 9n…)– не образуют гамет, не размножаются,нет в природе.
- Последствия мутаций для клетки и организма
- Доминантные и рецессивные признаки у человека
- Виды изменчивости.
- 27 Комбинативная изменчивость