logo
Bilet_1

-Глобулины.

Трансферрин – связывает и транспортирует железо в различные ткани, регулирует концентрацию. М.М. 90 кД, концентрация – 2 – 3 г/л, синтезируется в печени и в макрофагальной системе. Имеет 2 активных центра, связывает 2 атома железа. Связывает и переносит Zn, Cu и витамин D.

Трансферрин предотвращает избыточное накопление Fe3+ в тканях и потерю его с мочой.

Уменьшение содержания трансферрина отмечается при гепатитах, опухолях, нефротическом синдроме. Повышение содержания связано с усиленным распадом эритроцитов.

Билет 95

АЗОТ ОСТАТОЧНЫЙ - азот небелковых соединений (мочевины, аминокислот, мочевой кислоты, креатина и креатинина, аммиака, индикана и др.), остающихся в сыворотке крови после осаждения белков. Концентрация А. о. в сыворотке крови является ценным диагностическим показателем при многих заболеваниях. А. о. определяют в надосадочной жидкости - после удаления осажденных белков сыворотки крови центрифугированием - с помощью азотометрического метода Кьельдаля в его многочисленных модификациях, колориметрических и гипобромитных методов. Метод Кьельдаля заключается в осаждении белков трихлоруксусной кислотой, минерализации надосадочной жидкости в присутствии концентрированной серной кислоты, перегонке образовавшегося аммиака и его количественном определении. Метод Кьельдаля в наст, время используется для проверки точности других методов определения азота. Для серийных определений он мало пригоден из-за своей трудоемкости.

В норме концентрация А. о. в сыворотке крови равна 20-40 мг/100 мл, или 14,3-28,6 ммоль/л. Увеличение содержания А. о. в крови происходит при почечной недостаточности, а также при сердечной недостаточности, злокачественных опухолях, инф. болезнях (в результате усиления распада тканевых белков и повышения содержания в крови небелковых азотсодержащих соединений). Уменьшение концентрации А. о. отмечают при беременности.

Азотемия (азот + греч. haima кровь) — избыточное содержание в крови азотсодержащих продуктов белкового обмена — см. Почечная недостаточность.

 В плазме присутствуют также безазотистые органические вещества: глюкоза, нейтральные жиры и липоиды (липиды).

Билет 96.

Согласно современным предтавлениям, все клеточные и внутриклеточные мембраны устроены сходным образом: основу мембраны составляет двойной молекулярный слой липидов (липидный бислой) на котором и в толще которого находятся белки ( см. рис. 1). Липидные бислои образуются амфифильными молекулами фосфолипидов и сфингомиелина в водной фазе. Амфифильными эти молекулы называют потому, что они состоят из двух частей, различных по своей растворимости в воде: полярной "головки", обладающей высоким сродством к воде, т. е. гидрофильной, и "хвоста", образуемого неполярными углеводородными цепями жирных кислот; эта часть молекулы обладает низким сродством к воде, т. е. гидрофобна.

   В состав липидов мембран входят в основном фосфолипиды, сфингомиелины и холестерин. Например, в мембранах эритроцитов человека их содержание, составляет, соответственно 36, 30 и 22 % по весу; еще 12% приходится на гликолипиды

 Примером амфифильной молекулы может служить молекула фосфатидилэтаноламина, структура которой показана на рис. 2. Как и другие фосфолипиды, фосфатидилэтаноламин, в химическом отношении представляет собой сложные эфиры трехатомного спирта глицерина с двумя жирными кислотами; к третьей гидроксильной группе присоединен ортофосфат, а к нему - небольшая органическая молекула, характерная для каждого вида фосфолипидов. В рассматриваемом случае это этаноламин, но могут быть также холин, инозитол, серин и некоторые другие молекулы.

   В состав липидного слоя мембран входят также холестерин и сфингомиелины; последние близки к фосфолипидам по химическому строению и физическим свойствами.

 Белки мембран принято делить на интегральные и периферические. Интегральные белки имеют обширные гидрофобные участки на поверхности и нераствориммы в воде.

   С липидами мембран они связаны гидрофобными взаимодействиями и частично погружены в толщу липидного бислоя, а зачастую и пронизывают бислой, оставляя на поверхности сранительно небольшие гидрофильные участки.

   Отделить эти белки от мембраны удается только с помощью детергентов, типа додецилсульфата или солей желчных кислот, которые разрушают липидный слой и переводят белок в растворимую форму (солюбилизируют его) образуя с ним ассоциаты. Все дальнейшие операции по очистке интегральных белков осуществляются также в присутствии детергентов.

 Периферические белки связаны с поверхностью липидного бислоя электростатическими силами и могут быть отмыты от мембраны солевыми растворами.

Клетки

Мембраны

Функции

Все клетки

Клеточные (цитоплазматические)

Активный перенос K+, Na+, Ca2+ Подержание осмотического равновесия

Большинство клеток

Клеточные

Связывание гормонов и включение механизмов внутриклеточной сигнализации

Нервные и мышечные клетки

Клеточные

Генерация потенциалов покоя и действия Распространение потенциала действиЯ

Большинство клеток (кроме эритроцитов)

Внутренняя мембрана митохондрий

Перенос электронов на кислород и синтез АТФ (окислительное фосфорилирование)

Большинство клеток (кроме эритроцитов)

Эндоплазматический ретикулум

Перенос ионов кальция из клеточного сока внутрь везикул

Клетки зрительного эпителия

Мембраны зрительных дисков

Поглощение квантов света и генерация внутриклеточного сигнала

 В таблице 1 перечислены функции цитоплазматических и некоторых внутриклеточных мембран.    Во всех живых клетках биологические мембрану выполняют функцию барьера, отделяющего клетку от окружающей среды, и разделяющего внутренний объем клетки на сравнительно изолированные "отсеки" (compartments).

   Сами по себе перегородки, разделяющие клетки на отсеки, построены из двойного слоя липидных молекул (называемого часто липидным бислоем) и практически непроницаемы для ионов и полярных молекул, растворимых в воде.

   Но в этот липидный бислой встроены многочисленные белковые молекулы и молекулярные комплексы, одни из которых обладают свойствами селективных (т. е. избирательных) каналов для ионов и молекул, а другие - насосов, способных активно перекачивать ионы через мембрану. Барьерные свойства мембран и работа мембранных насосов создают неравновестное распределение ионов между клеткой и внеклеточной средой, что лежит в основе процессов внутриклеточной регуляции и передачи сигналов в форме электрического импульса между клетками.

   Вторая функция, общая для всех мембран - это функция "монтажной платы" или матрицы, на которой располагаются в определенном порядке белки и белковые ансамбли, образующие системы переноса электронов, запасания энергии в форме АТФ, регуляции внутриклеточных процессов гормонами, поступающими извне и внутриклеточными медиаторами, узнавания других клеток и чужеродных белков, рецепции света и механических воздействий и т

   Гибкая и эластичная пленка, которой по существу являются все мембраны, выполняет и определенную механическую функцию, сохраняя клетку целой при умеренных механических нагрузках и нарушениях осмотического равновесия между клеткой и окружающей средой.

   Общие для всех мембран функции барьера для ионов и молекул и матрицы для белковых ансамблей обеспечиваются главным образом липидным бислоем, который устроен в принципе одинаково во всех мембранах.

   Однако набор белков индивидуален для каждого типа мембран, что позволяет мембранам участвовать в выполнении самых разных функций в различных клетках и клеточных структурах. Некоторые из этих фукнкций упомянуты в

Самосборка фосфолипидных молекул в липидных везикулы в водном растворе. Каждая фосфолипидная молекула состоит из полярной группы и жирнокислотных хвостов. В водном растворе происходит самосборка мембран (справа) и замыкание мембран с образованием липидных пузырьков, называемых липосомами (слева).

Резюме

   Биологические мембраны, наряду с цитоскелетом, формируют структуру живой клетки. Клеточная или цитоплазматическая мембрана окружает каждую клетку. Ядро окружено двумя ядерными мембранами: наружной и внутренней.     Все внутриклеточные структуры: митохондрии, эндоплазматический ретикулум, аппарат Гольджи, лизосомы, пероксисомы, фагосомы, синаптосомы и т представляют собой замкнутые мембранные везикулы (пузырьки).     Каждый тип мембран содержит специфический набор белков - рецепторов и ферментов; но основа любой мембраны - бимолекулярный слой липидов (липидный бислой), который во всякой мембране выполняет две главные функции: барьера для ионов и молекул и структурной основы ( матрицы) для функционирования рецепторов и ферментов.

Термин "мембраны" как окружающей клетку невидимой плёнки, служащей барьером между содержимым клетки и внешней средой и одновременно - полупроницаемой перегородкой, через которую могут проходить вода и некоторые растворенные в ней вещества, был впервые использован, по-видимому, ботаниками фон Молем и независимо К. фон Негели (1817-1891) в 1855 г для объясненеия явлений плазмолиза.    В 1877 г. ботаник В. Пфеффер (1845-1920) опубликовал свой труд “Исследования осмоса” (Leipzig), где постулировал существование клеточных мембран, основываясь на сходстве между клетками и осмометрами, имеющими искусственные полупроницаемые мембраны, которые были приготовлены незадолго до этого М. Траубе.

   Дальнейшее изучение осмотических явлений в растительных клетках датским ботаником Х. де Фризом (1848-1935) послужило фундаментом при создании физико-химических теорий осмотического давления и электролитической диссоциации датчанином Я. Вант-Гоффом (1852-1911) и шедским ученым С. Аррениусом (1859-1922 ).    В 1888 году немецкий физико-химик В. Нернст (1864-1941) вывел уравнение диффузионного потенциала. В 1890 году немецкий физико-химик и философ В. Оствальд (1853-1932) обратил внимание на возможную роль мембран в биоэлектрических процессах.

   Между 1895 и 1902 годами Э. Овертон (1865-1933) измерил проницаемость клеточной мембраны для большого числа соединений и показал прямую зависимость между способностью этих соединений проникать через мембраны и их растворимостью в липидах.    Это было чётким указанием на то,что именно липиды формируют плёнку, через которую проходят в клетку вещества из окружающего раствора.    В 1902 году Ю. Бернштейн (1839-1917) привлек для объяснения электрических свойств живых клеток мембранную гипотезу.

   В 1925 году Гортер и Грендел показали, что площадь монослоя липидов, экстрагированных из мембран эритроцитов, в два раза больше суммарной площади эритроцитов. Гортер и Грендел экстрагировали липиды из гемолизированных эритроцитов ацетоном, затем выпаривали раствор на поверхности воды и измеряли площадь образовавшейся мономолекулярной пленки липидов.    На основе результатов этих исследований было сделано предположение, что липиды в мембране располагаются в виде бимолекулярного слоя. Это предположение подтвердили исследования электрических параметров биологических мембран (Коул и  Кёртис, 1935 год): высокое электрическое сопротивление, порядка 107 Омм2 и большая электроемкость 0,51 '/м2.

   Вместе с тем имелись экспериментальные данные, которые свидетельствовали о том, что биологическая мембрана содержит в своем составе и белковые молекулы.    Эти противоречия экспериментальных результатов были устранены Даниелли и Давсоном, предложившими в 1935 году так сказать "бутербродную" модель строения биологических мембран, которая с некоторыми несущественными изменениями продержалась в мембранологии в течении почти 40 лет. Согласно этой модели, на поверхности фосфолипидного бислоя в мембранах располагаются белки.