logo search
Фізіологічна екологія

Эквиваленты терминологии ускорений

Линейное движение

А

В

Направление ускорения

Инерционная результирующая по нагрузке на тело

Авиационные обозначения (система I)

Описательные термины ускорения (система II)

Физиологические термины (система III)

Физиологические обозначения (система IV)

Местная описательная терминология

Вперед

х

Ускорение спина-грудь

Поперечная А-Р Супинальная Грудь-спина

+gх

Глазные яблоки «внутрь»

Назад

–ах

Ускорение грудь-спина

Поперечная Р-А Прональная Спина-грудь

–gх

Глазные яблоки «наружу»

Вверх

z

Ускорение ноги голова

Положительная

+gz

Глазные яблоки «вниз»

Вниз

–аz

Ускорение голова-ноги

Отрицательная

–gz

Глазные яблоки «вверх»

Вправо

y

Боковое ускорение вправо

Боковое влево

+gy

Глазные яблоки «влево»

Влево

–аy

Боковое ускорение влево

Боковая вправо

–gy

Глазные яблоки «вправо»

Буква «g» используется как единица для выражения инерционной результирующей к ускорению всего тела, умноженной на величину ускорении силы тяжести –gо=980,665 см/сек2. А – Р Anterior – Posterior; P – A Posterior – Anterior (табл. дана с сокращением).

Математически это может быть выражено следующим образом: , где n – величина перегрузки (ед.): Рд – вес динамический; Рс – вес статический. В зависимости от направления действия перегрузок по отношению к вертикальной оси тела их делят на продольные и поперечные. При направлении вектора перегрузки от головы к ногам говорят о положительных, а при направлении от ног к голове – об отрицательных перегрузках. Кроме того, различают поперечные (спина – грудь и грудь – спина), а также боковые (бок – бок) перегрузки. Направление вектора перегрузки имеет существенное значение для организма и при описании физиологических реакций его всегда нужно учитывать.

Реакция человека на воздействие перегрузок определяется рядом факторов, среди которых существенное значение принадлежит величине, времени действия, скорости нарастания и направлению вектора перегрузки по отношению к туловищу, а также исходному функциональному состоянию организма, зависящему от многих условий внешней и внутренней среды-Изменения в организме могут проявляться от едва уловимых функциональных сдвигов до крайне тяжелых состояний, сопровождающихся резкими расстройствами деятельности органов дыхания, сердечно-сосудистой, нервной и других систем, что может привести не только к потере сознания, но иногда и к грубым анатомическим повреждениям тела.

Общее состояние человека при действии перегрузок характеризуется появлением чувства тяжести во всем теле, болевых ощущений за грудиной или в области живота, вначале затруднением, а в дальнейшем и полным отсутствием возможности движений. Происходит смещение мягких тканей и ряда внутренних органов в направлении действия перегрузки. Наблюдаются расстройства зрения, характер и степень выраженности которых определяются не только величиной перегрузки, но и направлением ее действия по отношению к туловищу.

В зависимости от плотности внутренних органов (удельного веса), места их положения, эластичности связей с окружающими тканями характер происходящих нарушений может быть различным. Понятно, что наиболее подвижной тканью в организме являются кровь и тканевая жидкость. Поэтому нарушениям гемодинамики, как будет видно, принадлежит одно из ведущих мест в генезе физиологических сдвигов при перегрузках. Однако определенное значение имеют и такие факторы, как смещение внутренних органов и их деформация, обусловливающие не только нарушение функции этих органов, но также и усиленную афферентацию в центральную нервную систему, что нередко приводит к расстройству ее функции.

Изучение функционального состояния центральной нервной системы, особенно ее высших отделов, при действии перегрузок приобрело особую актуальность в связи с необходимостью оценки работоспособности пилотов. Первые исследования в этом направлении были проведены в реальных полетах В. А. Винокуровым и др. Авторами были получены данные, свидетельствовавшие об увеличении латентного периода ответных реакций на подаваемый раздражитель. В дальнейшем эти результаты были не только подтверждены, но и углублены в опытах, проведенных на центрифуге Г. Л. Комендантовым и др. Позднее Л. А. Бронштейн и В. И. Загрядский, применив метод условных двигательных реакций, в опытах на здоровых испытуемых убедительно доказали, что перегрузки средней величины вызывают растормаживание следовых рефлексов и небольшое торможение наличных, а перегрузки большой величины – выраженное торможение условных рефлексов.

Весьма интересен установленный ими факт, что при повторных воздействиях происходит некоторая адаптация организма к перегрузкам. Это положение было подтверждено и в ряде других работ. Отсюда вытекает важный в практическом отношении вывод о целесообразности проведения ознакомительно-тренировочных вращении. Правда, не решен еще вопрос о режимах подобного рода тренировок: величинах перегрузок, числе вращении в каждом сеансе, интервалах между отдельными сеансами и т.н.

По наблюдениям ряда авторов, восстановление высшей нервной деятельности по показателям условных рефлексов происходит волнообразно: при средних величинах перегрузок этот срок не превышает 5 минут.

Определенный интерес представляют исследования характера и механизмов изменений высшей нервной деятельности, происходящих при действии перегрузок. Они позволили установить, что изменения со стороны условных рефлексов наблюдаются уже при перегрузке величиной 1-3 ед. При этом прежде всего страдает процесс внутреннего торможения, возникают фазовые явления, а при больших перегрузках - полное торможение условных рефлексов. Б. М. Савин и Я. К. Сулимо-Самуйлло, анализируя полученные данные, пришли к заключению, что в начале действия перегрузки наблюдается повышение возбудимости коры головного мозга.

Это положение нашло подтверждение в электрофизиологических исследованиях, в которых отмечали появление фазовых состояний, а также в физиологических исследованиях, в которых использовали в качестве анализаторов функционального состояния корковых клеток фармакологические средства. В первой фазе, которая наступала сразу же после начала действия перегрузок, наблюдалось значительное увеличение числа быстрых потенциалов с одновременным уменьшением их амплитуды – реакция десинхронизации ЭЭГ. Вторая фаза характеризовалась появлением медленных волн – реакция синхронизации ЭЭГ, Третья фаза наступала только при перегрузках выше 6 ед., проявляясь признаками декомпенсации сердечной деятельности и дыхания и еще большим увеличением синхронизации биоэлектрической активности коры.

Сопоставление изменений высшей нервной деятельности и показателей сердечнососудистой системы позволило высказать мысль о том, что нарушения условных рефлексов определяются не столько гемодинамическим и расстройствами в головном мозге, сколько необычными по своему характеру, величине и сочетанию потоками афферентных импульсов, поступающих в центральную нервную систему от различных органов и тканей.

Таким образом, под воздействием уже небольших величин перегрузок наступают выраженные функциональные сдвиги со стороны центральной нервной системы, которые выявляются как методом условных рефлексов, так и отведением биоэлектрической активности головного мозга. Естественно, что наблюдаемые изменения со стороны функции центральной нервной системы сопровождаются снижением не только физической, но и умственной работоспособности членов экипажа летательных аппаратов.

Влияние перегрузок на функцию внешнего дыхания определяется не только величиной и временем действия перегрузок, но и ее направлением по отношению к вертикальной оси человеческого тела. При этом наиболее глубокие расстройства наблюдаются при строго поперечном направлении вектора перегрузки, когда механические силы, действующие на грудь и живот, затрудняют осуществление дыхательных экскурсий грудной клетки и передней стенки живота.

Наиболее общим в реакции дыхания с увеличением перегрузки является его учащение.

Так, по данным П. К. Исакова, частота дыхания и легочная вентиляция при действии положительных перегрузок претерпевают значительные изменения. При перегрузках величиной 5-6 ед. в ряде случаев легочная вентиляция увеличивается в 2-3 раза по сравнению с исходной.

С прекращением действия перегрузки наступает сравнительно быстрое восстановление показателей внешнего дыхания до исходного уровня.

При поперечно направленных перегрузках нарушения дыхания нередко имеют ведущее значение в общей симптоматике наблюдаемых расстройств организма. Поэтому в дальнейшем основное внимание уделяется описанию характера нарушений дыхания при поперечных перегрузках. Исследованиями А. Р. Котовской и др. установлено, что при поперечно-направленных перегрузках 7-10 ед. частота дыхания у испытуемых лиц увеличивалась в 1,5-2 раза, по наблюдениям Черняк и др. при 8 ед. – в 2 раза, а при 12 ед. – в 3 раза.

Л. С. Барер и соавторы пришли к заключению, что градиент нарастания частоты дыхания (grad = Д частоты дыхания Д д) является при поперечных перегрузках до 12 ед. величиной постоянной и равен 2,8. При больших перегрузках наблюдается уменьшение дыхательного объема легких, уменьшение потребления кислорода и увеличение выделения СО2 и дыхательного коэффициента.

По наблюдениям А. С. Барера и др., характер изменений минутного объема дыхания был весьма сложным, с нарастанием перегрузки претерпевал эволюцию по S образной кривой.

Некоторые авторы отмечали заметное уменьшение насыщения крови кислородом и содержания его в тканях. Проводя исследования содержания оксигемоглобина в крови, уже при перегрузках величиной 3-5 ед. наблюдали снижение насыщения артериальной крови О2 на 14-25%.

Следует обратить внимание на то, что в ряде случаев, особенно при положительных перегрузках, развивающаяся гипервентиляция вследствие возбуждения рецептеров каротидного синуса сопровождается снижением напряжения С02 в крови тяжелой гипоксемией. Уменьшение насыщения артериальной крови кислородом до 80%, вероятно, является следствием гемодипамических расстройств в большом круге кровообращения и возникновения легочного шунтирования.

К. А. Коваленко и др. при помощи полярографического метода установили определенную зависимость между степенью снижения напряжения кислорода в тканях мозгя и величиной и направлением действия перегрузок. Наиболее выраженные изменения напряжения кислорода наблюдались при действии перегрузок в направлении голова - таз. При этом напряжение О г понижалось с увеличением перегрузки; так, при 6 ед. оно равнялось 84 % от исходного, принятого за 100%, при 8 ед. – до 78%, при 10 ед. – 74% и при 12 ед. – 72%. Естественно, что при поперечном направлении вектора перегрузки напряжение О2 в головном мозге претерпевало меньшие изменения.

Действие больших величин перегрузок, как правило, у нетренированных людей всегда приводило к кислородной задолженности организма, которая ликвидировалась только через 3-6 мин. после окончания действия перегрузки. В этот период резко возрастает минутный объем дыхания, увеличивается потребление О2 и выделение СО2.

Результаты исследований свидетельствуют о том, что степень кислородной задолженности и скорость ее ликвидации зависят не только от величины перегрузки и времени ее действия, но также от физической и специальной тренировки испытуемых.

Несомненно, что в ряде случаев расстройствам внешнего дыхания принадлежит существенное место в патогенезе нарушений функций центральной нервной системы и зрения при действии перегрузок. Поэтому понятно, что для повышения переносимости перегрузок человеком были небезуспешно применены такие методы, как дыхание чистым кислородом и дыхание под повышенным давлением.

Изучение действия перегрузок на сердечно-сосудистую систему было предметом многих исследований. В настоящее время накоплен большой материал, характеризующий изменения в системе кровообращения при воздействии перегрузок различных режимов. Можно без преувеличения сказать, что нарушения в системе кровообращения во время действия перегрузок по сравнению с другими сдвигами в организме наиболее значимы и им принадлежит ведущее место в генезе физиологических реакций. Это связано с явлениями перераспределения циркулирующей массы крови, обладающей наибольшей возможностью к смещению.

Степень перераспределения крови определяется главным образом направлением действия перегрузок. Наибольшие изменения гемодинамики происходят при действии перегрузок в направлении продольной оси тела и наименьшие – при поперечном, что обусловлено расположением магистральных кровеносных сосудов тела. При воздействии перегрузок в краниокаудальном направлении происходит перемещение массы крови из сосудов, расположенных в верхней части тела, в сосуды, находящиеся в полости живота и нижних конечностях.

Естественно, что в результате такого смещения крови возникает изменение со стороны кровяного давления. При этом в сосудах, расположенных ниже уровня сердца, кровяное давление повысится, а выше – понизится. В этих условиях приток крови по венам к сердцу будет затруднен, уменьшится количество выбрасываемой сердцем крови. В результате возникает анемия мозга и ряда органов чувств, что нередко сопровождается расстройствами зрения и может привести к потере сознания. При действии перегрузок в направлении от ног к голове кровь скапливается в верхней части туловища, отчего давление в сосудах мозга повышается.

Действие поперечно направленных перегрузок на гемодинамику в силу анатомических особенностей расположения магистральных сосудов выражено значительно меньше. Однако практически строго поперечное положение по отношению к вектору перегрузки используется крайне редко. В подавляющем большинстве исследований человеку придается положение полулежа с тем или иным наклоном спинки кресла, приводящим к возникновению составляющий перегрузки в направлении продольной оси тела. В этих случаях также существенное место принадлежит нарушениям в системе кровообращения за счет действия их в краниокаудальным направлении. Кроме того, при оценке гемадинамических эффектов необходимо учитывать, что многие органы и ткани тела обладают разветвленной сетью сосудов с более или менее равномерным распределением их по всем направлениям. Поэтому перемещение крови в пределах того или иного органа будет возникать при любом направлении инерционных сил. Такое перераспределение крови способно привести к местному расстройству кровообращения и нарушению функций соответствующих физиологических систем.

В настоящее время накоплен большой экспериментальный материал по рассматриваемым вопросам.

У человека во время воздействия перегрузок в направлении голова-ноги отчетливо выявляется резкая бледность лица и значительное расширение венозной системы ног. После прекращения вращения побледнение кожи лица в большинстве случаев сменяется гиперемией. При действии положительных перегрузок очевидным является усиление тока крови и системе верхней полой вены и замедление его в нижней полой вене. Недостаточность притока крови к голове и усиление ее оттока по венам приводит к быстрому запустеванию сосудистого русла головы и шеи. Одновременно наблюдается усиление притока артериальной крови к органам брюшной полости и нижним конечностям, а также затруднение венозного оттока из этих областей, что ведет к застою крови в нижних конечностях и брюшной полости. Все это влечет недостаточность притока венозной крови к правой по потише сердца, а следовательно, сокращение величины ударного и минутного объемов.

Особый интерес представляют работы, в которых во время действия перегрузок были получены непрерывные записи кровяного давления и сделаны рентгеновские снимки сердца. Приведенные данное показывают, что между величиной перегрузки и степенью падения давления существует прямая зависимость. Сопоставление кривых изменений кровяного давления в сонной артерии и нарастания перегрузок обнаруживает некоторое отставание в реакциях организма. Изменения кровяного давления начинают развиваться не сразу после начала действия перегрузок, а спустя некоторое время. В результате создается положение, когда кровяное давление продолжает понижаться, в то время как величина перегрузки удерживается на постоянном уровне. С уменьшением действия перегрузки кровяное давление достигает исходной величины также не сразу, а через несколько секунд. Эти взаимоотношения позволяют объяснить иногда внезапность появления зрительных нарушений и потерю сознания уже в периоде уменьшения перегрузки, а также жалобы некоторых летчиков на ухудшение самочувствия уже после воздействия. Такое отставание изменений кровяного давления определяется инерцией крови, состоянием тонуса сосудов и резервных возможностей сердечной мышцы на данный момент.

Рентгенологическими исследованиями установлено, что тень сердца и крупных сосудов с нарастанием перегрузки (голова – таз) становится все бледнее, свидетельствуя об уменьшении кровенаполнения полостей сердца. Результаты рентгено-кинематографических исследований. Проведенных в этих условиях, свидетельствуют также об уменьшении объема сердца. После прекращения вращения возникало острое кратковременное расширение сердца вследствие резкого усиленного притока к нему крови.

Одновременно различными исследователями было отмечено изменение прозрачности различных участков легких. Так, при действии перегрузок в направлении голова – таз наблюдали просветление верхних долей легкого и увеличение затемнения в нижних долях, при действии же перегрузок в направлении грудь –- спина просветление наблюдалось в передних долях и затемнение – в задних долях легкого.

Особый интерес представляют исследования, В которых у человека при действии положительных перегрузок прямым путем определяли венозное давление в яремной вене и артериальное давление на уровне головы. Они показали, что при значительном падении артериального давления в верхней половине туловища кровообращение в мозге сохранилось вследствие падения давления в яремной вене на величину порядка 30-50 мм рт.ст. ниже нуля. Достаточная разница в давлении между артериальной и венозной кровью обеспечивала кровообращение даже при падении артериального давления в области головы до нуля. Эти факты рассматривают как. проявление компенсаторных реакций, направленных на сохранение жизненно важных функций во время воздействия перегрузок.

Результаты плетизмографических исследований, полученные при действии положительных перегрузок на человека, свидетельствуют об увеличении объема голеней. Исследование объемного пульса ушной раковины и наблюдение за степенью прозрачности уха, осуществляемое фотоэлектрическим методом, показывает, что при действии положительных перегрузок происходит уменьшение кровенаполнения и снижение амплитуды пульсовых осцилляции. Понижение кровяного давления в сосудах, расположенных выше сердца, вызывает через синокаротидную зону и другие ангиорецепторы включение механизмов компенсации гемодинамических расстройств. В результате происходит учащение сердечных сокращений, а также сужение кровеносных сосудов ряда областей.

Существует достаточно четкая зависимость между величиной перегрузки и частотой сердечных сокращений.

При этом выявлена зависимость в изменении частоты пульса не только от величины перегрузок, но и от продолжительности их действия. У человека в зависимости от величины действующих перегрузок частота сердечных сокращений достигает 130-180 ударов в минуту. Самая высокая цифра частоты сердечных сокращений, зарегистрированная у человека при действии перегрузок, составила 197 ударов.

Следует отметить, что повышение частоты пульса наблюдается в подавляющем большинстве случаев еще до начала воздействия перегрузок.

Указанное учащение пульса отмечается как в условиях подготовки вращения на центрифуге, так и при подготовке к полетам. При этом степень предполетного или предопытного учащения пульса определяется как индивидуальными особенностями человека, так и характером предстоящего воздействия. Этот вид тахикардии, обусловленный эмоциональным напряжением перед предстоящим испытанием, многие авторы определяют термином «стартовая лихорадка».

В связи со сказанным интересно отметить, что учащение пульса во время вращения достигало значительно больших величин у тех лиц, у которых наблюдалось отчетливое увеличение частоты сердечных сокращений перед началом воздействия. Учащение пульса перед вращением может достигать 80-100-120 и даже 14.0 ударов в минуту при 60-70 ударах в обычных условиях.

Особого внимания заслуживает рассмотрение случаев, когда ЧСС человека при вращении на центрифуге достигала предельных в (180-197 ударов в минуту). Как правило, при продолжении действия перегрузок в подобных экспериментах наступало падение частоты сердечных сокращений и даже 60 ударов в минуту. Одновременно регистрировались и другие нарушения сердечной деятельности в виде появления экстрасистолии, явлений в проведении возбуждения по миокарду и других расстройств сердечного ритма. Отмечены значительные зрительные нарушения вплоть до полной потери зрения («черная пелена»). Появление одного из указанных признаков служило сигналом к прекращению вращения. Сразу же после остановки центрифуги отмечаются бледность кожных покровов лица, цианоз губ, языка, ушных раковин, явления гиперемии, ухудшение общего самочувствия. Частота пульса при этом обычно некоторое время удерживается на достигнутом уровне или продолжает понижаться до исходного уровня. Явления возникшей брадикардии и другие признаки сердечно-сосудистой недостаточности носят временный характер и редко сохраняются более 1-2 часов. В последующем наблюдается вторичный подъем частоты сердечных сокращений, который обычно бывает небольшим и спустя 3-6 мин сменяется нормальной частотой. Резкое снижение частоты сердечных сокращений является, несомненно, неблагоприятным моментом и оценивается исследователями как проявление декомпенсации сердечной деятельности.

Электрокардиографические исследования, проведенные при действии положенных перегрузок, помогают установить ряд изменений со стороны функции сердца здоровых людей. Во время действия перегрузок на электрокардиограммах отмечается развитие синусовой тахикардии, незначительное уменьшение времени атриовентикулярной проводимости, уменьшение зубцов П и Т, увеличение зубца S, а в некоторых случаях также и смещение интервала ниже изоэлектрической линии. После прекращения действия перегрузок все эти изменения, как правило, быстро исчезают и сменяются брадикардией, во время которой проявляется резко выраженная совая аритмия, а в некоторых случаях экстрасистолия.

Так, при перегрузке в 2-3 ед. наблюдается укорочение интервалов РО, интервал QRS практически не изменяется; наибольшие изменения претерпевает интервал ТР; комплекс QRS уменьшается и уплощается зубец Т. При перегрузке 5 ед. отмечается уменьшение высоты всех зубцов, отчетливое уплощение зубца во 2-м И 3-м отведениях); и ряде случаев зубец Т становится отрицательным. При перегрузке 5,0-5,5 ед. интервал QRS приобретает форму дуги, изогнутой кверху, не дающей возможности дифференцировать зубец П. Зубец В значительно уменьшен. Интервал ST, позволяющий судить о наличии признаков коронарной недостаточности, почти во всех случаях смещается относительно изолинии. В ряде случаев отмечена экстрасистолия, как правило, желудочкового типа.

У некоторых испытуемых в фазе резкого падения частоты сердечных сокращений на ЭКГ зарегистрированы признаки, свойственные коронарной недостаточности (рис. 13). Патогенетические механизмы их проявления, вероятно, заключаются в разности кислородного голодания сердечной мышцы (смещение интервала ST, уплощение инверсия зубца Т и др.). В появлении синусовой тахикардии при действии положительных перегрузок несомненно значительное место принадлежит рефлекторным механизмам, среди которых ведущее значение имеют баро-рецепторы синокароп зоны. Изменение величины зубцов желудочкового комплекса (увеличение зубца, уменьшение зубцов Я и Т) в основном обусловлено отклонением электрической оси сердца вправо в результате смещения сердца. В самом деле, если испытуемый во время действия перегрузок величиной 5 ед. делал форсированный выдох, во время которого диафрагма поднималась и сердце вновь принимало обычное положение, на ЭКГ отмечалась нормализация зубцов Р и S, хотя зубец Т оставался уплощенный во время воздействия перегрузок несомненно отражается на амплитуде зубцов ЭКГ, однако не вес изменения зубцов могут быть объяснены только смещением электрической оси сердца. Нарушения ритма сердечной деятельности наблюдаются в виде экстрасистолий различного типа. Изменения биоэлектрической активности миокарда во время воздействия и после прекращения его могут быть обусловлены влиянием комплекса факторов: изменение тонического влияния на сердце со стороны вегетативной нервной системы, изменения кровенаполнения желудочков сердца, нарушения коронарного кровообращения и т.д.

Значительный интерес представляют данные изучения отклонений в ЭКГ человека в период появления признаков функциональных нарушений центральной нервной деятельности в виде обморочного состояния и при расстройствах зрения в виде «серой» и «черной» пелены.

Рис. 13 Зависимость изменений ЭКГ от величины действующих перегрузок в направлении голова – таз (по. Малкин В. Б., 1957). А – при величине перегрузок 3 ед.: 1 – до воздействия, 2 – во время нарастания перегрузок, 3 – при действии перегрузок – «площадки», 4 – через минуту после воздействия; Б – при величине перегрузок 6 ед.: 1 – до воздействия, 2 – при действии перегрузок – «площадки» в течение 3 сек., 3 – при действии перегрузок – «площадки» в течение 10 сек., 4 – при действии перегрузок – «площадки» в течение 20 сек.

Они свидетельствуют о том, что ослабленная сердечная деятельность во .многих случаях служит причиной нарушения кровообращения мозга и последующего расстройства сознания и зрения. Смещение интервала 5Т и изменение зубца Т приобретают важное практическое значение, поскольку эти изменения обычно отмечаются за 10-20 сек. до появления признаков нарушения мозгового кровообращения. Такая ЭКГ может сигнализировать о возможности появления глубоких функциональных нарушений центральной нервной системы при дальнейшем увеличении перегрузок и удлинении их действия.

При воздействии на организм перегрузок происходят значительные изменения в гемодинамике малого круга кровообращения, активно участвующей в обеспечении оксигенации крови в легких. В основе этих сдвигов лежит перераспределение крови в системе легочной артерии под действием перегрузок.

Одним из наиболее вероятных механизмов, направленных на обеспечение достаточного уровня оксигенации крови в легких, является прогрессивное депонирование крови в системе легочной артерии, сопровождающееся неравенством систолических объемов правого и левого желудочков. Кроме того, было показано, что время эффективности такого механизма компенсации весьма ограничено (1-1,5 мин.). Затем наступает понижение оксигенации крови, определяющееся величиной и временем действия перегрузок.

Pиc14. Схема основных механизм ускорений на организм (по: Котовский Е. О., 1972).

Таким образом, воздействие перегрузок вызывает изменения частоты пульса, силы сердечных сокращений, приводит к изменению артериального и венозного давления, скорости кровотока, создает определенное перераспределение циркулирующей крови и обусловливает целый ряд физиологических сдвигов.

Степень и выраженность физиологических реакций зависит, с одной стороны, от величины, продолжительности, направления и скорости нарастания перегрузок, с другой, – обусловливается характером и выраженностью компенсаторных реакций, направленных на приспособление организма к воздействию внешнего фактора среды.

Вопрос о механизме влияния перегрузок постоянно привлекал к себе внимание исследователей. Если первоначально все нарушения деятельности организма связывались исключительно с изменениями условий гидростатики, приводящими к расстройствам гемодинамики, в частности нарушениям церебрального кровообращения, то на протяжении последних 10-15 лет все большее значение в их развитии стало придаваться нарушениям рефлекторной регуляции функций, обусловленным необычными афферентными влияниями. Развитию такого рода представлений способствовало как накопление новых фактов, не укладывающихся в рамки существовавших ранее концепций, так и достижения в области изучения интероцепции. Необычность афферентации проявляется не только в ее величине, но и в сочетании. Ярким примером этого могут служить раздражения, поступающие в центральную нервную систему со стороны механорецепторов (прессорецепторов) сосудистой системы. Если при перегрузках направления голова таз и таз – голова необычность афферентации по интенсивности определяется крайне резким повышением давления в артериальных и венозных сосудах большого круга кровообращения, то необычность афферентации по сочетанию связана с. возникновением весьма значительных перепадов давления по ходу самих сосудов, а также между артериями и венами, в результате чего в центральную нервную систему поступают раздражения, направленные на осуществление рефлекторных реакций противоположного характера – одновременно прессорных и депрессорных, что приводит к развитию явлений своеобразной «ошибки» безусловных рефлексов. Сходные эффекты обнаруживаются в системе малого круга кровообращения при перегрузках направления грудь – спина и спина – грудь. Наконец, необычными по величине и сочетанию являются раздражения, поступающие со стороны проприо- и механорецепторов мышечной системы. Развитие деформаций мышечной ткани приводит к одновременному раздражению рецепторов в мышцах-антагонистах. Осуществление рефлекторных реакций, направленных на уравновешивание необычных механических условий окружающей среды, вызывает изменение деятельности эндокринной системы, играющей важную роль в осуществлении компенсаторных реакций организма, а также в изменении уровня обменных процессов, в частности, изменении активности ферментов (повышении активности лактатдегидрогеназы (+ЛДГ), снижении активности сукцинатдегидрогеназы (-СДГ) уменьшении содержащейся в цитоплазме рибонуклеиновой кислоты).

Вопрос об удельной значимости расстройств гемодинамики и необычных афферентных влияний в развитии нарушений деятельности организма при перегрузках различного направления продолжает оставаться еще недостаточно ясным и требует дальнейшего изучения. Полагают, что роль каждого из указанных механизмов может существенно изменяться s зависимости от характера воздействия, в частности длительности, величины, направления и повторности перегрузок.

При кратковременном воздействии перегрузок даже больших величин основное значение в развитии нарушений Деятельности организма имеют необычные афферентные влияния, поступление которых в центральную нервную систему может привести даже к развитию шокового состояния с присущим ему комплексом сдвигов, характерных для стрессовых реакции.

При продолжительном воздействии перегрузок механизм нарушений в значительной мере определяется вектором перегрузки. При перегрузках направления голова – таз, относимых по величине к функционально переносимым, основное значение в развитии сдвигов функционального состояния центральной нервной системы и регуляции деятельности других систем организма имеют необычные афферентные влияния. Однако при повторном воздействии перегрузок и ослаблении мехнизмов компенсации все большее значение приобретают нарушения микроциркуляции, приводящие к развитию, вследствие гипоксии, изменений обменных процессов. При перегрузках направления таз – голова основное значение принадлежит явлениям циркуляторной гипоксии мозга, а также нарушениям нормальной деятельности функций организма, связанным с резким повышением внутричерепного давления и раздражением иптероцепторов органов средостения.

При перегрузках направления грудь – спина на первое место в механизме нарушений выступают расстройства функции внешнего дыхания и гемодимамические нарушения в легких, приводящие к гипоксемии и гипоксии важнейших органов и тканей организма, что, в свою очередь, является причиной необычной афферентной импульсации, способствующей возникновению расстройств центральной регуляции. Основные звенья механизма влияния ускорений на функциональные системы организма показаны на рис. 14.

Рассматривая вопрос о пределах переносимости перегрузок человеком, следует различать биологическую и физиологическую переносимость. Границы биологической переносимости определяются сохранением жизни, но при этом возможны нарушения функций ряда органов и систем организма. Границы физиологической переносимости определяются сохранением работоспособности человека и, как правило, отсутствием патологических сдвигов. Основным видом проявлений действия перегрузок в последнем случае являются «реакция напряжения» на гемодинамические расстройства, механическое затруднение дыхания, смещение и обратимая деформация внутренних органов.

Известно, что переносимость перегрузок определяется многими факторами, основные из них – величина и направление воздействия, продолжительность его, скорость нарастания перегрузок, а также функциональное состояние организма.

Обращает на себя внимание различная переносимость человеком перегрузок, имеющих разное направление и величину. Наименее устойчив человек к действию перегрузок каудо-краниального направления, и, напротив, наиболее устойчив действию перегрузок, действующих по оси грудь – спина.

Вопрос об изыскании средств повышения устойчивости организма к длительно действующим ускорениям приобрел практическую значимость, когда дальнейшее повышение мощности моторов и маневренности самолетов стало лимитироваться пределами физиологической переносимости человеческого организма.

Развитие авиационной техники, и особенно космических полетов, требует не только сохранения высокой работоспособности, но и дальнейшего повышения порогов устойчивости к действию ускорений.

К решению этой проблемы привлечено внимание многих специалистов, и осуществляется оно по разным направлениям.

Условно эти направления можно представить следующим образом:

  1. Физические методы повышения устойчивости: противо-перегрузочные компенсирующие костюмы; специальные кресла, позволяющие придавать оптимальную позу человеку по отношению к вектору ускорений; индивидуально профилированные ложементы; дыхание под повышенным давлением; иммерсионные системы различных типов.

  2. Физиологические методы повышения устойчивости: неспецифические и специфические виды физической тренировки, тренировки на центрифуге и общее закаливание организма; повышение резистентности организма посредством стимуляции его компенсаторно-приспособительных механизмов фармакологическими препаратами; снижение реактивности организма при помощи фармакологических средств или различнойглубины охлаждения.

  3. Комплексные методы повышения устойчивости организма, состоящие из различных сочетаний упомянутых, средств.

Все перечисленные методы имеют свои достоинства и недостатки.

Так, исходя из того, что основным патогенетическим звеном при действии положительных перегрузок (голова – таз) является перемещение крови от головы и верхних отделов туловища в сосуды брюшной полости и нижние конечности, уже в 1943 г. были предложены первые типы противоперегрузочной одежды, затрудняющие перераспределение крови под влиянием сил гравитации.

В настоящее время как у нас, так и за рубежом практически используется несколько вариантов противоперегрузочных костюмов. Однако принцип их действия во всех случаях общий – при увеличении перегрузок автоматически происходит повышение давления в резиновых камерах, обхватывающих область живота, бедер и голеней. При этом чем больше перегрузка, тем выше создается давление в камерах костюма.

Артериальное давление в сонной и плечевой артериях, а также в мочке уха удерживается на более высоком уровне, улучшается приток крови к мозгу и сердцу, меньше изменений наблюдается со стороны зрения, биоэлектрической активности миокарда, условнорефлекторной деятельности и энерготрат.

Таким образом, применение противоперегрузочных костюмов оказалось достаточно эффективным. Испытания показали, что применение этих костюмов повышает переносимость перегрузок на 0,8-1,3 ед.

Как указывалось выше, наибольшая переносимость перегрузок наблюдается при поперечном направлении их действия по отношению к вертикальной оси человеческого тела.

В результате проведения специальных исследований, направленных на изыскание наиболее оптимальной позы человека во время действия перегрузок, было установлено, что требуется строгое соблюдение соотношения углов наклона спинки кресле и подголовника по отношению к вектору перегрузки, а также бедер и голеней по отношению к туловищу. При этом наиболее существенно положение туловища и головы.

Повышение переносимости организма при оптимальной позе человека по отношению к вектору ускорений может быть достигнуто посредством создания индивидуальных профилированных ложементов, обеспечивающих большую площадь противодавления действующим силам. Переносимость перегрузок в этих условиях повышается до 25 ед.

Одним из ведущих факторов в патогенезе нарушений при действии поперечно направленных перегрузок является расстройство функций внешнего дыхания и кровообращения, ведущее к гипоксемии и гипоксии. Это побудило исследователей испытать эффективность дыхания под повышенным давлением при перегрузках. При этом отмечали значительное по времени (в 2 раза большее) повышение устойчивости, если испытуемые дышали чистым кислородом или газовой смесью под избыточным давлением. Этот эффект объясняют улучшением газообмена в легких, а следовательно, предотвращением развития кислородного голодания.

Значительный интерес представляет теоретически и экспериментально разработанный К.Э. Циолковским и впервые практически примененный в Канаде Френксом метод повышения переносимости перегрузок при помощи иммерсионных систем.

Однако, несмотря па высокую эффективность этого метода, его практическое использование на современных летательных аппаратах неосуществимо из-за большой сложности и громоздкости иммерсионных систем; кроме того, помещение пилота в контейнер с жидкостью ведет к резкому ограничению его возможности по наблюдению и управлению кораблем. Все это заставляет, не отказываясь от самого принципа разработки защиты от перегрузок при помощи гидросистем, изыскивать и другие методы решения этой сложной проблемы.

Таким образом, уже в настоящее время разработаны достаточно эффективные методы защиты организма от действия перегрузок. Однако все рассмотренные физические способы повышения устойчивости связаны с применением более или менее сложных устройств и приспособлений.

Вполне естественным было стремление исследователей наряду с изысканием физических способов защиты организма от действия ускорений изучить и его физиологические резервы как посредством тренировки и стимуляции, так и путем изменения реактивности.

Многочисленные наблюдения врачей убедительно показали, что общее закаливание организма и специальные физические упражнения, направленные на совершенствование механизма регуляции кровообращения и дыхания, укрепление мышц брюшного пресса и ног, выработка навыков переключения дыхания с «брюшного» типа на «грудной» и наоборот, способность к длительному тоническому напряжению отдельных групп мышц – все это значительно повышает переносимость перегрузок. Поэтому регулярные занятия физической культурой являются важной частью подготовки как летчиков, так и космонавтов.

Повышение резистентное организма к перегрузкам достигается также посредством тренировки на центрифуге. В настоящее время актуальной задачей является разработка наиболее рациональных схем и методов тренировки на центрифуге для повышения резистентности организма к действию перегрузок.

В последнее время все больше внимания уделяется проблеме глубокого охлаждения организма, с целью повышения устойчивости его к неблагоприятным воздействиям, 8 том числе и к перегрузкам. Ведутся исследования по изучению возможности использования фармакологических средств для повышения выносливости к перегрузкам.

Естественно, что более перспективным является комплексное применение противоперегрузочных средств.

Ударные ускорения. Ударные ускорения в космическом полете оказывают воздействие в двух основных случаях: при аварийном покидании корабля на старте или взлете; при посадке на Землю. Кроме того, при падении, столкновении, резком торможении или внезапном броске, которые могут иметь место в процессе выполнения космонавтом различных заданий, организм также подвергается действию ударных ускорений. Последние бывают тотальными, когда все тело испытывает механические нагрузки, и локальными, когда распространение деформации (или сотрясения) ограничивается только областью приложения силы.

Степень воздействия ударных ускорений на организм может существенно изменяться, во-первых, в зависимости от условий размещения членов экипажа в кабине космического корабля, во-вторых, от выбранных методов спасения или посадки и, в-третьих, от характеристики реактивных энергодатчиков катапультирования или средств амортизации при приземлении. Особенно неблагоприятные условия возникают при аварийном использовании указанных систем. В этом случае величина ускорения, например, в момент посадки на скальный грунт, может возрасти я десятки раз.

Значительные по величине ударные ускорения не только вызывают нарушения физиологических функций, но могут привести к повреждению костного аппарата, мягких тканей и отдельных органов тела.

.Поэтому ко всем летательным аппаратам и их системам (например, катапультирования, приземления} предъявляются определенные физиолого-гигиенические требования с целью ограничения предельных воздействий ударной перегрузки и создания оптимальных условий экипажу (размещение, позы и т.д.) при их возникновении. Всестороннее изучение физиологических и биомеханических реакций у человека, подвергаемого воздействию, позволяет разработать профилактические и защитные средства, предупреждающие отрицательное влияние ударных ускорений на организм. Ударные ускорения, встречающиеся в космических полетах, чаще всего относятся по своей физической характеристике к прямолинейным ускорениям.

Свое название ударные ускорения получили от резкого толчка, сотрясения всего тела или удара, которое они вызывают при воздействии. Ударный характер определяется кратковременностью действия и высоким градиентом или скоростью нарастания ускорения, достигающей сотен и тысяч единиц в секунду. Это придает ударным ускорениям импульсные, или «пиковые», свойства, с физической стороны сближающие их с ударом или ударной волной при взрывах.

Ударные ускорения, возникающие при раскрытии парашюта, вынужденной посадке самолета, катапультировании пилота, приземлении спасательной капсулы или кабины космического корабля, имеют, как правило, продолжительность не более одной секунды. Поэтому их также называют кратковременными ускорениями, хотя это определение менее точно, так как нередко радиальные (центростремительные), прямолинейные или угловые ускорения с малой скоростью их нарастания, являясь кратковременными, не носят ударного характера.

Наряду с термином «ударные или кратковременные ускорения» в отечественной литературе и практике прочно укоренился также термин «ударные перегрузки», который отражает более существенные стороны явления и поэтому более удобен в анализе физиологических реакций организма.

Под термином «перегрузка» легче понимается механическая нагрузка, действующая сила, тогда как термин «ускорение» выражает изменение скорости и легче ассоциируется со скоростью вообще, которая, как известно, является индифферентным раздражителем. Понятие перегрузки непосредственно передает смысл механического воздействия на организм, когда последний находится в условиях изменяющейся скорости движения. В этом смысле допустимо сказать, что существом действия ускорений на организм является перегрузка, вызывающая механическое напряжение всех (и главным образом опорных) элементов тканей и органов тела.

Помимо большой скорости нарастания и кратковременности действия, ударные перегрузки характеризуются также максимальной величиной («пиком») и полнотой диаграммы. Необходимо, кроме того, обращать внимание на скорость спада перегрузки, особенно когда после первого импульса сразу же действуют последующие – совпадающие по направлению или противоположные перегрузки. В этом случае может наступать отрицательное для организма суммирование эффекта воздействия.

Ударные перегрузки в зависимости от условий их возникновения и по сходству физических параметров могут быть подразделены на четыре группы, характерные для следующих случаев:

Параметры перегрузок в зависимости от особенностей применяемых условий их использования (скорость полета, плюсовая или минусовая температура и т.д.) могут существенно варьировать. Переносимость человеком ударных перегрузок зависит от многих факторов:

Большинство факторов, определяющих переносимость ударных перегрузок относится к биомеханике человека, к условиям приложения механической энергии и ее трансформации в нем.

Количественно реакция тела человека на воздействие ударной перегрузки точно сложна и еще мало изучена. Однако качественно ока может быть представлена тремя видами первичной реакции организма на ударное воздействие:

Для изучения влияния на организм ударных перегрузок, л также для различных средств защиты, спасения и безопасной посадки применяются катапульты и ударные стенды, представляющие собой сложные инженерные сооружения.

Воздействие на человека комплекса факторов, связанных с ударной перегрузкой, вызывает ответные реакции, которые условно можно разделить на несколько видов:

Период предварительного усиления функций наступает, как только случается аварийная ситуация или когда человек попадает в обстановку экспериментальных испытаний с предстоящим воздействием ударной перегрузки. Функциональные изменения в это время имеют преимущественно условнорефлекторный характер и отличаются защитной реакцией на возможное повреждающее действие сильного раздражителя.

Подобная условная реакция у человека возникает в ответ на необычную обстановку, на связанный с действующим фактором какой-либо натуральный или искусственный раздражитель. В этот период организм подготовляется к предстоящему воздействию. Путем усиления физиологических функций как бы накапливаются необходимые резервы для поддержания жизнедеятельности в готовых, чрезвычайных условиях; предварительное усиление функций имеет генерализованный характер и является неспецифической защитной реакцией.

По существу, глубиной физиологических изменений в этот период определяется устойчивость функциональных систем организма к внешнему воздействию. В момент самого ударного воздействия, продолжительность которого измеряется долями секунды, не успевают развиться выраженные изменения исследуемых функций организма, и если возникающие при этом деформации не достигают необратимых пределов, то этот кратковременный период непосредственного приложения механической энергии, вызывающий многообразные, но очень непродолжительные ограничения жизненных процессов, переходит в последующий, более длительный период последействия.

В проявлении физиологических функций в этом периоде наблюдаются две качественно различные стадии. Первая – это стадия первичных рефлекторных нарушений, вызванных непосредственным действием механической силы на ткани и органы, следствием чего является торможение, ослабление данной функции. Характером реакций в это время по существу определяется предел переносимых величин ударных перегрузок. Если наблюдается резко выраженное ослабление функции (например, падение уровня артериального давления), то дальнейшее увеличение действующего фактора может привести к развитию патологического состояния. Ослабление функции может быть относительным, когда снижение показателей отмечается по сравнению с уровнем предварительного усиления, или абсолютным, когда показатели функции снижаются ниже исходной, нормальной величины (например, падение уровня максимального артериального давления ниже 100 мм рт.ст,).

Вторая стадия этого периода охватывает комплекс реакций, направленных на нормализацию вызванных изменений. Она позволяет выявить индивидуальные отличил реакций организма, регуляторные особенности исследуемых функций и, в конечном итоге, степень физиологического ущерба, нанесенного организму внешним воздействием. Возникающее в связи с этим чрезмерное напряжение всех защитных систем может приводить в этот период к истощению функциональных резервов организма, когда регуляторные механизмы приспособительных реакций оказываются резко ослабленными.

В первой стадии функциональных сдвигов можно наблюдать задержку или остановку дыхания, брадикардию или более глубокие расстройства ритма, падение артериального давления, торможение двигательных реакций, ослабление мышечного тонуса и т.д.

Эти и другие изменения, возникающие при непосредственном действии перегрузки на организм, являются результатом раздражения большинства афферентных систем, что, по-видимому, и приводит к распространенному торможению функций. Не исключается возможность аналогичного эффекта (или его усиления) и от непосредственного влияния ударной перегрузки на клетки центральной нервной системы.

Функциональные изменения в последующие стадии последействия но своим проявлениям иногда могут совпадать с перечисленными выше (например, повторная брадикардия и др.). Возникают они в результате действия механизма саморегуляции, направленного на нормализацию функций, или вследствие истощения нейрорегуляторных механизмов.

Поэтому изменения, наблюдаемые в первой стадии по физиологическим механизмам следует отличать как от предварительного усиления функций, так и от физиологических сдвигов в последующих стадиях.

Однако период последействия не оканчивается восстановлением функций. По истечении некоторого времени, измеряемого уже часами или даже сутками, наблюдается период вторичного последействия, когда развиваются проявления реактивного состояния, связанные в основном с микротравмой тканей в момент ударного воздействия. Реактивные и деструктивные изменения наблюдаются не только в очагах микротравмы, но и в других местах, что, по-видимому, может быть следствием трофических влияний со стороны центральной нервной системы. Интенсивность микротравмы при обычных (допустимых) величинах ударного воздействия невелика, так что реактивное состояние не всегда клинически проявляется в этом периоде. Тем не менее, с наличием такого последействия следует всегда считаться при решении врачебно-экспертных вопросов.

Как уже отмечалось, качественные особенности в реакциях организма па ударные воздействия зависят от их физической характеристики. При изменении времени действия перегрузки от 1 сек. до 1 мсек. последовательно наступают: нарушение физиологических функций; повреждение скелета и опорных структур; повреждение элементов тканей и паренхимы органов.

С увеличением продолжительности до 1 сек. ударное воздействие осложняется присоединяющимися к нему циркуляторными расстройствами в тканях и органах без нарушения функции кровообращения в целом, а с уменьшением продолжительности – осложнения (а виде реактивного состояния, трофических расстройств и пр.) становятся связанными уже с микротравмой, возникающей в тканях от распространения волны давления (сжатия) по телу. По мере усиления ударного действия перегрузки, увеличения ее пикового значения и сокращения продолжительности наблюдается сближение порогов функциональных и морфологических нарушений.

Глубокое понимание механизмов действия ударных перегрузок па организм связано с анализом физиологических и биодинамических изменений, с определением степени взаимосвязи этих изменений, с разработкой количественных критериев динамической реакции тела, с более детальной оценкой той меры функциональных изменений, которые возникают в месте непосредственного приложения механической энергии – меры ущерба в тканях, рецепторах, опорных структурах и паренхиме органов.

Повышение переносимости человеком ударных перегрузок может достигаться тремя путями:

Реакции организма человека на невесомость.

Первые научно-теоретические разработки вопросов, связанных с оценкой возможного влияния на организм человека отсутствия силы тяжести, были проведены К.Э. Циолковским (1883, 1911, 1919). В трудах этого выдающегося ученого, признанного «отцом космонавтики», высказываются предположения о том, что при невесомости изменится двигательная функция, пространственная ориентировка, могут возникнуть иллюзорные ощущения положения тела, головокружения, приливы крови к голове. Длительное отсутствие тяжести, по его мнению, может постепенно привести к изменению формы живых организмов, утрате или перестройке некоторых функций и навыков. Циолковский проводил аналогии между состоянием невесомости и условиями, г которыми человек сталкивается на Земле (погружение в воду, пребывание в постели). Он указывал, в частности, что поскольку постоянное пребывание в постели может быть вредным для здоровых людей, то и в «среде без тяжести» можно ожидать развития аналогичных нарушений. И хотя автор предполагал возможность приспособления человека к этому состоянию, «па всякий случай» он предусматривал необходимость в создании искусственной тяжести за счет вращения космического корабля. Таким образом, трудами Циолковского, по существу, были предопределены основные направления экспериментальных исследований влияния невесомости на биологические объекты (изучение сенсорных, двигательных, вегетативных реакций), заложены пространственного расположения окружающих предметов, что выражается в кажущемся смещении рассматриваемых объектов и «промахивании» при попытках их достижения.

Изменение взаимоотношений в деятельности афферентных систем в состоянии невесомости рассматривается также в качестве одной из возможных причин возникновения симптомов, характерных для болезни движения или укачивания. Существует, в частности, мнение, что длительное постоянное возбуждение отолитовых рецепторов вестибулярного аппарата подавляет реакции с полукружных каналов. С этой точки зрения функциональная двафферентация отолитового прибора должна способствовать растормаживанию рефлексов с полукружных каналов и повышать их чувствительность к воздействию угловых ускорений. К объяснению вегетативных проявлений вестибулярного происхождения может быть привлечен также закон Вебера - Фехнера. Поскольку постоянно действующая величина адекватного раздражителя вестибулярного аппарата при переходе к невесомости уменьшается, его чувствительность к ускорениям в этом состоянии в соответствии с законом Вебера – Фехнера должна быть выше, чем в наземных условиях. Действительно, резкие движения головой и туловищем в начале полета вызывали у некоторых космонавтов головокружение и другие сенсорные реакции, которые на Земле обычно проявлялись при более сильном воздействии, например, при вращении на кресле Барани. Впрочем, возникновение тошноты и рвоты, характерных для болезни движения, может в состоянии невесомости определяться не только характером вестибулярной афферентации. Существует предположение, что необычное распределение газов и жидкостей в различных областях пищеварительного тракта в невесомости может провоцировать тошноту. В экспериментах на делабиринтированных собаках показано, что возбудимость рвотного центра при действии угловых ускорений может повышаться и за счет интероцептивной афферентации, исходящей от органов брюшной полости. Была также выдвинута гипотеза об участии гемодинамического механизма, связанного с увеличением кровенаполнения черепно-мозговых сосудов, и генезе вестибуло-вегетативных расстройств.

Со стороны соматического компонента вестибулярной реакции (нистагм) и порогов чувствительности вестибулярного аппарата к неадекватным раздражениям (к постоянному току) в условиях длительной невесомости не было выявлено существенных отличий от данных предполетного периода. Вместе с тем при кратковременной невесомости на самолете нистагм в ответ на вращательную пробу и электростимуляцию подавлялся. На основании этих фактов исследователи рассматривают невесомость как своеобразный «минус-раздражитель» отолитового аппарата. Отсутствие калорического нистагма в невесомости имеет иную причину и связано с тем, что конвекция любых жидкостей, в том числе и эндолимфы, в этом состоянии физически невозможна.

Полеты на орбитальных станциях, проведенные в последние годы, показали, что по мере адаптации к невесомости нарушения, связанные с действием ускорений, возникающих при перемещении космонавтов в кабине и при исследованиях на вращающемся кресле, полностью исчезают. С другой стороны, появились сообщения о возникновении вестибулярных расстройств после завершения длительных космических полетов, в то время как изменения со стороны пороговой чувствительности отолитового аппарата к линейным ускорениям отсутствовали. Таким образом, продолжение исследований по оценке вестибулярной функции в космическом полете остается актуальной задачей, в особенности применительно к разработке систем искусственной весомости.

Одним из проявлений уравновешивания организма с внешней средой в состоянии невесомости может быть изменение функционального состояния рецепторных образований. Нейрофизиологическая основа этого процесса может состоять в развитии «адаптации» рецепторов или изменении их «настройки» в результате центробежных влияний. Если допустить, что длительное отсутствие гравитационных стимулов также сопровождается изменением чувствительности соответствующих рецепторных образований, то возникает вопрос, в какой мере обратимы эти изменения. Стойкие изменения функционального состояния рецепторов способны неблагоприятно отразиться на переносимости стрессовых воздействий, характерных для космического полета, и на течении послеполетного периода.

Анализ особенностей процесса реадаптадии у космонавтов, а также наблюдения, проведенные при длительной гиподинамии, свидетельствуют об изменениях со стороны общей реактивности, регуляции вегетативных и двигательных функций. Происхождение упомянутых сдвигов трудно связать исключительно с изменениями рецепторного, афферентного звена рефлекторной дуги, но в принципе такая связь возможна.

Несовершенством обратной афферентации можно объяснить нарушения координации движений в статике и динамике после окончания космических полетов.

С изменением функционального состояния рецепторов можно связать И некоторые особенности регуляции водного обмена у космонавтов в полете и послеполетном периоде.

На функциональное состояние организма в длительном космическом полете немаловажное влияние может оказать также уменьшение потока внешних раздражений, связанное с отсутствием гравитационных стимулов, и с однообразными условиями обитания в замкнутом пространстве кабины космического корабля, недостатком привычных колебаний параметров внешней среды и т.д. Хотя опыт проведенных космических полетов не выявил отчетливых ограничений, вытекающих из этого фактора, при дальнейшем увеличении продолжительности полетов он может привести к изменениям общего психического тонуса, эмоционального настроя, самочувствия и работоспособности космонавтов. Так, в исследованиях с длительной гиподинамией, при которых однообразие внешней обстановки, пребывание в вынужденной позе, существенное изменение стереотипа повседневной деятельности также являлись причиной обеднения афферентного фона, довольно часто отмечается возникновение неустойчивого настроения испытуемых, раздражительности, навязчивых идей, конфликтных ситуаций, а в отдельных случаях и психических расстройств. Естественно, в генезе этих реакций нельзя исключить значения типологических особенностей испытуемых и разнообразных эндогенных факторов.

Таким образом, первичное влияние невесомости на функцию афферентных систем приводит к развитию многообразных сенсорных, двигательных, вегетативных и психологических реакций, отдельные из которых способны снизить эффективную роль человека в выполнении программы длительного космического полета и осложнить течение периода реадаптации. Значение изменений со стороны интероцептивной афферентной системы более подробно будет рассмотрено в связи с описанием других первичных механизмов влияния невесомости на организм.

Распределение жидкости в системе эластичных резервуаров определяется законами гидростатики. Гидростатическое давление, величина которого пропорциональна высоте столба жидкости и ее удельному весу, воздействуя на стенки резервуара, вызывает их растяжение и соответствующее перераспределение объемов жидкости вниз. Такого рода закономерность проявляется и в распределении биологических жидкостей (главным образом крови) у человека и животных в наземных условиях. Пребывание в вертикальном положении сопровождается относительным депонированием некоторого объема крови в нижней половине тела, снижением венозного возврата к сердцу, систолического выброса и комплексом соответствующих компенсаторных реакций.

Ходьба, бег, прыжки, изменения положения тела в пространстве меняют величину и направление гравитационных смещений крови у человека, благодаря чему организм находится в состоянии постоянной готовности к включению компенсаторных реакций, связанных с действием гидростатического фактора. Постоянное пребывание в горизонтальном положении уменьшает величину и изменяет направление гидростатических сил, а погружение в воду способствует их нейтрализации. Поскольку вода через мягкие ткани оказывает эквивалентной противодавление на сосудистые стенки, депонирования крови в нижней половине тела даже при вертикальной позе не происходит. В состоянии невесомости действие гидростатического давления снимается полностью.

Результатом всех этих процессов оказывается перемещение некоторого объема крови из нижней половины тела в верхнюю. Существует мнение, что перераспределение жидкой среды в организме является наиболее важной биологической реакцией на гравитацию. Многие космонавты испытывали в состоянии невесомости ощущение прилива крови к голове. Оно уменьшалось при «закрутке» корабля, если космонавт располагался вдоль радиуса вращения и головой по направлению к его центру. Гиперемия кожных покровов лица, развитие отечности носоглотки и тканей лица в условиях невесомости также могут быть поставлены в связь с перераспределением крови. Электроплетизмографические исследования, проведенные при кратковременной невесомости на самолете, выявили увеличение кровенаполнения сосудов органов грудной клетки. В полете экипажей на орбитальных станциях обнаружено повышение давления в системе яремных вен, а также развитие венозного застоя в бассейне черепно-мозговых сосудов.

Объективные признаки перераспределения крови регистрируются и в экспериментах с имитацией невесомости. Например, при длительном пребывании на постельном режиме выявлена застойная дилатация сосудов глазного дна.

Относительное возрастание центрального объема крови при снижении гидростатического давления составляет у человека, по данным Гаузра и соавторов, приблизительно 400 см3. Оно является пусковым механизмом рефлекса, приводящего к изменениям водно-солевого обмена, потере плазмы и уменьшению общего объема циркулирующей крови до величины, при которой заполнение кровью центральных вен возвращается к гомеостатической норме. Рецепторная зона этого рефлекса локализована преимущественно в области левого предсердия. Га-уэр и Генри установили, что дыхание под отрицательным давлением и раздувание левого предсердия за счет сужения просвета митрального клапана резиновым баллоном увеличивают диурез у собак с 5 мл за 10 мин в норме до 13-21 мл за 10 мин. Импульсация от обнаруженных ими волюморецепторов левого предсердия поступает по вагусу в продолговатый мозг, а затем в супраоптическую область гипоталамуса, где осуществляется секреция антидиуретического гормона. Последний накапливается в нейрогипофизе и при поступлении в кровь, помимо антидиуретического, оказывает вазопрессорное действие, поэтому его называют также вазoпpecсином. Растяжение левого предсердия при увеличении венозного притока к сердцу тормозит секрецию антидиуретического гормона, что ведет к уменьшению реабсор-бции воды и натрия в почках, возрастанию диуреза и потере плазмы. Большое значение в регуляции водно-солевого равновесия придается также механизму осморецепции и выработке в коре надпочечников альдостерона, который усиливает реабсорбцию натрия. Регуляция секреции альдостерона осуществляется, в частности, при участии рецепторов правого предсердия. Вместе с тем, в конкуренции «объемного» и «осмотического» механизмов регуляции массы циркулирующей крови первому придается более важное значение, поскольку при нарушении постоянства объема крови осмотический механизм может уже не проявлять себя. Гормональные изменения, отмеченные в многосуточном космическом полете, включали в себя уменьшение концентрации в моче аптидиуретического гормона, возрастание активности ренина в плазме крови и концентрации альдостерона в моче.

В экспериментах с лабораторной имитацией невесомости потеря плазмы составляла от 300 до 800 мл. При проведении орбитальных полетов у космонавтов также обнаруживалось снижение объема циркулирующей плазмы на 100-500 мл.

Одновременно с полиурией, обусловленной возрастанием центрального объема крови, судя по опыту лабораторных исследований и космических полетов, уменьшается жажда и устанавливается отрицательный водный баланс. Процессы перестройки во дно-со левого обмена и развитие относительной дегидратации протекают довольно быстро преимущественно в течение первых двух суток воздействия, а затем водный обмен устанавливается на новом, более низком балансовом уровне. Уменьшаются интенсивность диуреза, количество потребляемой жидкости, а также скорость обновления воды.

Обусловленное потерей плазмы сгущение крови сопровождается возрастанием показателей гематокрита и вязкости, хотя в дальнейшем может происходить и уменьшение массы эритроцитов. В результате соотношение форменных элементов крови и плазмы нормализуется. Снижение общей массы гемоглобина, отмеченное при послеполетном обследовании космонавтов, обусловлено подавлением эритропоэза и, как показали лабораторные исследования с имитацией невесомости, становится более выраженным по мере того, как возрастает перераспределение крови из нижней половины тела в верхнюю. В поздние сроки экспериментального моделирования невесомости намечается тенденция к восстановлению объема циркулирующей крови. Механизм этого процесса неясен, однако его можно связать с развитием вторичного альдостеронизма или с изменением других механизмов регуляции водного обмена.

Потеря жидкости служит одной из причин снижения веса тела, которое неоднократно регистрировалось 8 послеполетном периоде. Величина этого снижения составляла в среднем от 2 до 5% от исходного веса тела, не зависела от продолжительности воздействия и относительно быстро компенсировалась за счет увеличенного потребления воды и пониженного диуреза. Отмечено, правда, что по мере увеличения продолжительности полетов восстановление веса происходило медленнее, что, вероятно, связано с изменением структуры потерь веса и увеличением доли тканевых потерь.

Патогенетическая связь описанных изменений водного обмена с гидростатическим фактором была подтверждена также исследованиями, проведенными на иммерсионной модели невесомости. Оказалось, что уменьшение величины компенсирующего противодавления воды на нижнюю часть тела, при котором действие гидростатического давления крови восстанавливалось, уменьшало диурез, увеличивало жажду, а тем самым эффективно предотвращало дегидратацию и снижение веса тела. Кроме того, было показано, что положение сидя или подъем головного конца кровати на 6" но отношению к горизонтали предотвращали развитие отрицательного водного баланса или потерю общей воды в организме, которые обычно возникают при имитации невесомости методом антиортостати-ческой гиподинамии.

Одним из важных последствий изменений распределения крови при антиортостатической модели невесомости является сдвиг в сторону метаболического ацидоза в крови, оттекающей от мозга. С явлениями ацидоза связываются функциональные сдвиги со стороны вестибулярного, зрительного и вкусового анализаторов, обнаруженные в этом исследовании.

Еще одним специфическим результатом отсутствия гидростатического давления может быть возникновение изменений венозного тонуса (особенно на нижних конечностях), регуляция которого в наземных условиях в значительной мере определяется колебаниями гидростатического давления. В частности, в экспериментах с имитацией невесомости меняются упругоэластичные свойства вен, лишенных этого привычного раздражителя. Возрастает их ригидность, ухудшается растяжимость и сократимость. Эта закономерность подтверждается и результатами послеполетного обследования космонавтов, хотя во время полета при воздействии отрицательного давления обнаружено возрастание растяжимости сосудов па ногах.

Патогенез других изменений сердечно-сосудистой системы в невесомости и при ее лабораторном моделировании более сложен и не может быть в столь определенной степени поставлен в зависимость только от отсутствия гидростатического давления крови.

Теснее всего, хотя и не полностью, связано с этим механизмом ухудшение постуральных реакций сердечно-сосудистой системы. Снижение ортостатической устойчивости обнаружилось уже после первых космических полетов человека. В дальнейшем это наблюдение многократно подтверждалось. Ортостатические нарушения закономерно проявляются и после экспериментов с водной иммерсией и постельным режимом.

Происхождение ортостатических расстройств связывается, в частности, с явлениями дегидратации, а точнее, с уменьшением общего объема циркулирующей крови, поскольку оно усугубляет снижение венозного возврата крови к сердцу при вертикальном положении тела. Следует заметить, что дегидратация любого происхождения (кровопускание, ограниченное потребление воды, тепловой стресс) отрицательно сказывается на переносимости воздействий, связанных с перераспределением крови к ногам. Правда, не все авторы находят четкую корреляцию между степенью дегидратации или уменьшением объема циркулирующей крови, с одной стороны, и выраженностью ортостатических нарушений, с другой, так что этот механизм не является единственным в формировании ортостатической неустойчивости. Большое значение в генезе ортостатических расстройств придается также снижению мышечного тонуса, в особенности на нижних конечностях, утомлению, емкости венозного депо в нижней половине тела, проницаемости сосудистых стенок и выходу плазмы в межклеточное пространство, особенностям нервно-гуморальной регуляции функций в вертикальном положении. Установлено, что ортостатические расстройства после полета бывают более выраженными у тех космонавтов, у которых устойчивость к вертикальной позе была относительно ниже и перед полетом.

Однонаправленность сдвигов при имитации невесомости и ортостатических воздействиях создает предпосылки для суммации эффектов в период перехода к вертикальному положению после окончания гиподинамии. Быстрее исчерпываются компенсаторные возможности сердечно-сосудистой системы и наступает срыв компенсации (преколлаптоидное состояние). Дальнейшее развитие декомпенсации выражается в падении минутного объема, нарушении мозгового кровообращения и появлении обморока.

Наличие связи между изменениями, которые возникают со стороны сердечно-сосудистой системы при имитации невесомости и при ортостатических пробах, позволяет по выраженности сдвигов, зарегистрированных в покое, судить об ожидаемых изменениях ортостатической устойчивости. Еще большие возможности для такого прогнозирования открываются в случае использования функциональных проб, воспроизводящих дозированное затруднение возврату венозной крови к сердцу. Обнаружена, в частности, высокая корреляция между реакциями на ортостатическую пробу и пробу Вальсальва. Особенно информативной является проба с воздействием отрицательного давления на нижнюю половину тела, которая используется во время самого полета, а также при предполетном и послеполетном обследовании космонавтов.

Причины возникновения неустойчивости к этим нагрузкам после имитации или действия реальной невесомости состоят, таким образом, не только в развитии дегидратации, но и в изменениях функционального состояния сердечно-сосудистой системы.

Дегидратация, обусловленная отсутствием или снижением гидростатического давления крови, по-видимому, является также одной из причин ухудшения переносимости ряда других стрессовых воздействий, в частности ускорений и физических нагрузок. Во всяком случае, экспериментальное обезвоживание на величину, составлявшую более 4% веса тела, при. вело к нарушениям со стороны изометрического мышечного сокращения, физической работоспособности и переносимости продольных ускорений.

Приведенные данные позволяют констатировать, что конечные эффекты, вытекающие из механизма перераспределения крови в состоянии невесомости, весьма серьезны. Понятно поэтому то большое значение, которое в настоящее время придается разработке мероприятий по профилактике изменений, связанных с отсутствием гидростатического давления крови в невесомости.

Снятие весовой нагрузки на опорно-двигательный аппарат н условиях невесомости служит причиной возникновений системных сдвигов, патофизиологической основой которых является «неупотребление».

Отсутствие необходимости в активном противодействии гравитационным силам и поддержании позы, уменьшение мышечных затрат на перемещение тела и отдельных его частей в пространстве теоретически должно приводить к снижению энергообмена и уменьшению требований к системе транспорта кислорода. Недогрузка мышечной системы и опорных структур, существенная перестройка двигательной координации в безопорном состоянии, кроме этого, создают предпосылки для изменений метаболизма, нарушений нейрогуморальных механизмов регуляции соматических и вегетативных функций и развития так называемого синдрома гиподинамии.

В длительных наземных исследованиях с пребыванием испытуемых ня постельном режиме и контролируемым ограничением двигательной активности, ее пространственных (гипокинезия) и силовых (гиподинамия) компонентов чаще всего наблюдается снижение основного обмена в пределах от 3-7 до 20-22%. Единичные измерения величины газообмена и легочной вентиляции во время космических полетов не да тот оснований для окончательных выводов, поскольку отмечено как увеличение, так и уменьшение потребления кислорода.

Выполнение ряда рабочих операций внутри и вне кабины космического корабля осложнено отсутствием привычной опоры и требует существенной перестройки координации движений. В результате мышечные и энергетические затраты на эти операции могут в состоянии невесомости возрасти по сравнению с наземными условиями.

Исследование энергетической стоимости локомоций, выполняемых в условиях экспериментально воспроизводимой гипогравитации, показало снижение энерготрат на выполнение одинаковых по характеру движений по мере уменьшения «веса». Энерготраты американских космонавтов при работе на поверхности Луны (1/6G) в специальном скафандре составляли в среднем 220-300 ккал/ч, что эквивалентно ходьбе без всякого снаряжения в наземных условиях со скоростью 5 км/ч.

Снижение энергетического метаболизма является одной из причин уменьшения потребности в пище. Такие наблюдения проведены, в частности, в опытах с водной иммерсией и гиподинамией.

К числу специфических последствий гиподинамии относятся и изменения со стороны опорно-двигательного аппарата.

Деминерализация костной ткани, которая неоднократно регистрировалась в наземных исследованиях с гиподинамией и после окончания реальных космических полетов, по-видимому, является следствием снижения весовой нагрузки на скелет.

Нельзя исключить возможности изменений механической прочности скелета вследствие его декальцинации. Снижение нагрузки на спорно-двигательный аппарат уменьшает эритро-поэтическую функцию костного мозга.

Недогрузка мышечной системы, которая даже при кратковременной невесомости выражается отчетливым снижением биоэлектрической активности мышц шеи, спины и бедра, приводит к уменьшению объема мышц и периметров нижних конечностей. Это явление, вероятно, связано с развитием атрофических процессов в мышцах, хотя в начальной фазе полета быстрое уменьшение периметров может зависеть и от уменьшения кровенаполнения нижних конечностей. Одновременно перестраивается белковый обмен, возникает отрицательный азотистый баланс. Уменьшается также общее содержание калия в организме, что свидетельствует о распаде мышечных белков.

Невесомость и экспериментальная гиподинамия приводят к уменьшению тонуса мускулатуры, мышечной силы, выносливости и физической работоспособности.

Уменьшение мышечного тонуса, физической напряженности и энергообмена в состоянии гиподинамии сопровождается развитием детренированности сердечно-сосудистой системы, что, в свою очередь ухудшает переносимость различных нагрузок. Большинство авторов констатируют замедление процесса нормализации частоты пульса после воздействия перегрузок и в первые часы пребывания g состоянии невесомости, что, по-видимому, является следствием своеобразной ориентировочной реакции на новизну обстановки и нервно-эмоциональное напряжение. Когда значение эмоционального фактора снижалось, нормализация частоты пульса протекала быстрее. Таким образом, относительная тахикардия в первые часы воздействия невесомости не является результатом ее специфического влияния на сердечно-сосудистую систему, В пределах 5-суточного срока пребывания в невесомости наиболее характерно урежение частоты пульса и увеличение его колеблемости, что связывают с относительным повышением тонуса блуждающего нерва. При более продолжительных полетах после первоначального снижения и последующей стабилизации частоты пульса намечалась тенденция к повышению этого показателя. Аналогичная зависимость проявляется и в экспериментах с имитацией невесомости. Для более продолжительных сроков гиподинамии характерно увеличение частоты пульса.

Обнаруженные в условиях длительной гиподинамии изменения частоты пульса рассматриваются многими авторами как проявление функциональной недостаточности вагуса и связанного с нею преобладания симпатических эффектов в регуляции сердечной деятельности.

Аналогичные изменения соотношений между симпатическими и парасимпатическими влияниями на сердечно-сосудистую систему обнаруживаются в реакциях артериального давления. В экспериментах с имитацией невесомости после первоначального снижения артериального давления в дальнейшем могут наблюдаться как гипотензивный, так и гипертензивный типы реакций с общей тенденцией к возрастанию артериального давления и снижению пульсового давления. В длительных полетах обнаружено повышение артериального давления, что рассматривается как результат высокого рабочего и эмоционального напряжения.

Электрокардиографические исследования, проведенные в условиях космических полетов, не выявили существенных изменений зубцов и интервалов электрокардиограммы. Ряд авторов отмечает, правда, некоторое удлинение времени предсердно-желудочковой или внутрижелудочковой проводимости и тенденцию к снижению амплитуды зубца Т, что свидетельствует об отклонениях со стороны функции проводимости и интенсивности обменных процессов в сердечной мышце в состоянии невесомости. Появление положительного феномена Хеклина, а также случаи экстрасистолии и даже бигемении, имевшие место у американских космонавтов, укладываются в картину гипокалиемии, что находит подтверждение в данных о возникновении отрицательного баланса калия во время космических полетов. В опытах с длительной гиподинамией также обнаружены позиционные сдвиги, замедление внутрисердечной проводимости и снижение амплитуды зубцов R и Т. В грудных отведениях выявляется синдром Tv-1 > Tv-6, что связывают с увеличением венозного притока к сердцу.

Изменения фазовой структуры сердечного цикла в исследованиях с имитацией невесомости часто укладываются в симптомокомплекс, который Карпман именует фазовым синдромом гиподинамии сердца. Отдельные сдвиги, свидетельствующие об уменьшении механической активности сердечной мышцы, выявлены и в условиях космического полета. К их числу относятся уменьшение амплитуды и продолжительности колебательных циклов сейсмокардиограммы, возрастание электромеханической задержки, механоэлектрического коэффициента и механосистолического показателя, а также увеличение периода напряжения и уменьшение периода изгнания. Вскоре после приземления у космонавтов в отдельных случаях зарегистрированы признаки ухудшения сократительной функции миокарда.

Изучение таких гемодипамических показателей, как величина систолического и минутного объемов крови, периферического сопротивления в условиях невесомости, было начато еще при полетах орбитальных станций «Салют». У космонавтов были отмечены признаки как уменьшения систолического и минутного объемов, так и увеличения их. Ранее при исследованиях, проведенных во время кратковременной невесомости па самолете, было обнаружено замедление скорости кровотока. При функциональных пробах с физической нагрузкой во время полета отмечены более низкие, чем до полета величины минутного объема крови.

В модельных экспериментах, по мнению большинства исследователей, систолический объем крови уменьшается. Периферическое сопротивление в условиях гиподинамии возрастает, но может и уменьшаться. В космических полетах сопротивление сосудов менялось в соответствии с динамикой выброса крови. Разноречивы сведения о скорости распространения пульсовой волны по аорте и артериям мышечного типа. Имеются сообщения об отсутствии закономерных изменений этого показателя, его увеличении или, наоборот, снижении. Следует отметить, что для большинства описанных изменений функционального состояния сердечно-сосудистой системы характерна фазовость, что отчасти объясняет разноречивость оценок относительно направленности некоторых сдвигов.

Основываясь на материалах, полученных в реальных космических полетах, различают несколько последовательных фаз адаптации сердечно-сосудистой системы к невесомости. Переходные реакции, связанные с нормализацией показателей после действия перегрузок, сменяются реакциями «разгрузочного» характера и последующей стабилизацией на уровне, отражающем преобладание парасимпатических эффектов в регуляции кровообращения. Однако, учитывая опыт лабораторных исследований и полетов, можно заключить, что на этом процесс адаптации не заканчивается. При длительных полетах возможно появление гинодинамически обусловленных реакций, включающих в себя преобладание симпатических эффектов, развитие фазового синдрома гиподинамии миокарда и детре-нированности сердечно-сосудистой системы.

Общие циркуляторные сдвиги, связанные с гиподинамией и снижением гидростатического давления крови, сопровождаются и изменениями регионарного кровообращения, в частности развитием венозного застоя. После полетов с помощью реографической методики обнаружена асимметрия тонуса мозговых артериол и вен. Нарушения мозговой гемоциркуляции рассматриваются в качестве причины ряда неврологических расстройств при длительной гиподинамии. Последние характеризуются симптомами межполушарной асимметрии и правосторонней пирамидной недостаточности. Асимметрия сухожильных рефлексов с правосторонним преобладанием выявлена и после космических полетов.

Изменяется и биоэлектрическая активность мозга, что авторы объясняют уменьшением функциональной подвижности корковых процессов и активирующего влияния ретикулярной формации. К числу других вероятных неврологических нарушений относят: вегетативно-сосудистую дисфункцию, астено-не-вротический синдром и синдром нейромышечных нарушений.

Условия реального космического полета ограничивают возможности проведения широких исследований обмена веществ, а также крови, мочи и других биологических субстратов. Чаще всего о воздействии невесомости судят по данным послеполетных обследований, хотя трактовка изменений, зарегистрированных после полета, в ряде случаев затруднена.

В длительных полетах на орбитальных станциях обнаружено снижение числа лейкоцитов и ретикулоцитов, а после приземления отмечались признаки торможения гемопоэза (уменьшение числа ретикулоцитов на 34%, эритроцитов на 15,2%, общей массы гемоглобина на 14-23, 6-34%). К 7-12 суткам ре адаптационного периода число ретикулоцитоа возрастало почти в 3,5 раза, что сопровождалось постепенным повышением числа эритроцитов и массы гемоглобина.

Увеличение СОЭ, возникновение нейтрофильного лейкоцитоза с лимфо- и эозинопенией, которые довольно часто регистрируются у космонавтов в послеполетном периоде, можно рассматривать как проявление ре адаптационного стресса. Об этом, в частности, свидетельствует увеличение концентрации корти-костероидов и катехоламинов в крови и повышение их экскреции с мочой после полета. Напротив, в состоянии невесомости и в процессе проведения модельных экспериментов обнаруживается снижение активности кортикоадреналовой системы.

Сведения о влиянии невесомости и имитирующих ее условий на свертываемость крови разноречивы.

Характер двигательной активности и питания в условиях невесомости влияет на состояние липоидного обмена, о чем можно судить по увеличению содержания в крови холестерина, лецитина и неэстерифицироваиных жирных кислот.

Изменения белкового обмена, обусловленные явлениями мышечной атрофии и связанные, по-видимому, со снижением ре-синтеза белка и скорости включения в него аминокислот, проявлялись у космонавтов в повышении содержания мочевины в крови и в усиленном выведении креатинина с мочой. Важным проявлением изменений белкового обмена служит и снижение синтеза гемоглобина в космическом полете.

Деминерализация костной ткани сопровождается усиленной экскрецией кальция в космическом полете и опытах с имитацией невесомости.

Общая астенизация и довольно выраженные изменения метаболизма, связанные с гиподинамией, сопровождаются снижением иммунологической резистентности и повышением вероятности заболеваний в космическом полете. Увеличение микробной обсемененности кожных покровов и слизистых оболочек создает дополнительные основания для подобных опасений.

Таким образом, снятие весовой нагрузки на костно-мышечный аппарат является самостоятельным и весьма важным пусковым механизмом в развитии разнообразных нарушений, обусловленных невесомостью. Целостная картина изменений, возникающих н состоянии организма человека под влиянием невесомости или имитирующих ее действие условий, включает в себя сложный комплекс реакций со стороны сердечно-сосудистой, костно-мышечной систем, системы крови, обменных функций, механизмов нервной и гуморальной регуляции, общей реактивности и иммунитета, состояния анализаторной и высшей нервной деятельности. Поскольку упомянутые реакции являются преимущественно выражением адаптационных сдвигов, они, как правило, не накладывают сколько-нибудь существенных ограничений на общее состояние и работоспособность космонавтов в процессе самого полета. Тем не менее имеющиеся научные данные не позволяют полностью исключить возможность развития более серьезных изменений при продолжительных полетах (большей выраженности деструктивных процессов, астенизации, возникновения заболеваний, требующих специализированной медицинской помощи, понижения физической и умственной работоспособности). Б настоящее время наиболее критической формой проявления сдвигов, обусловленных влиянием невесомости на организм человека, являются нарушения, которые возникают в ре адаптационном периоде. Основные из них состоят в снижении переносимости перегрузок, вертикальной позы, ухудшении физической работоспособности, координации ходьбы и других двигательных актов. Поэтому одной из важных в научно-практическом отношении задач медицинского обеспечения длительных космических полетов является разработка и внедрение системы мероприятий по профилактике расстройств, возникающих у космонавтов при возвращении на Землю.

Наиболее перспективные направления профилактических воздействий определяются механизмами формирования изменений, происходящих в невесомости. На достаточно упрощенной схеме патогенеза нарушений, обусловленных влиянием невесомости (рис. 15), показаны некоторые из возможных направлений и средств профилактики (звенья патогенеза и связь между ними обозначены тонкими линиями и стрелками, профилактические средства и направления их воздействия – жирными линиями и стрелками).

Наиболее естественным и практически осуществимым является применение профилактических воздействий на такие первичные, пусковые аффекты невесомости, как снятие гидростатического давления крови и весовой нагрузки на опорно-двигательный аппарат. В случае достаточно надежного блокирования этих первичных эффектов можно рассчитывать на прерывание цепи вторичнообусловленных сдвигов, в том числе и тех, которые вызывают наибольшую озабоченность в реадаптационном периоде. Значительно более сложен выбор метода профилактики тех сдвигов, которые связаны с изменениями в деятельности афферентных систем. Самым радикальным решением всех проблем выглядит введение искусственной гравитации на космических кораблях, однако в настоящее время еще не накоплено достаточного количества обоснований в пользу этого решения и не проведена оценка возможных побочных эффектов длительного пребывания в постоянно вращающейся системе, чтобы оправдать необходимость в ее разработке. Тем не менее поиски оптимальных параметров системы искусственной гравитации (радиуса, угловой скорости вращения, минимально эффективной величины радиального ускорения) проводятся.

Рис. 15. Схема патогенеза нарушений, обусловленных влиянием невесомости (по: Пестов И. Д., 1979)

Наиболее логичный путь профилактики последствий необычного распределения крови, связанного с отсутствием гидростатического давления, состоит в искусственном воспроизведении эффекта гидростатического давления. С этой целью в экспериментах с водной иммерсией и постельным режимом были испытаны следующие средства и методы: надувные манжеты на конечностях, дыхание под избыточным давлением и воздействие отрицательного давления на нижнюю половину тела.

Изучались также эффекты, достигаемые использованием центрифуги с коротким радиусом, где действие продольных перегрузок имитировало гидростатическое давление, но одновременно оказывало влияние на костно-мышечную систему и гравирецепцию. К рассматриваемой группе средств относятся также воздействия, обеспечивающие инерционные смещения крови вдоль магистральных сосудов при ударных нагрузках, действующих в направлении продольной оси тела.

Профилактические воздействия на некоторые промежуточные звенья этой патогенетической цепи могут осуществляться с помощью фармакологических и гормональных препаратов, а конечные эффекты (снижение ортостатической устойчивости после полета) – с помощью средств, оказывающих избыточное давление на нижнюю половину тела.

Таким образом, в отношении профилактики последствий ги-подинамического синдрома существует вполне реальная конструктивная основа, состоящая в создании постоянной (с помощью нагрузочных костюмов) и переменной (посредством выполнения комплексов упражнений на специальных тренажерах) нагрузки на костно-мышечный аппарат, использовании фармакологических препаратов и средств неспецифической профилактики.

Разумеется, действие большинства описанных выше профилактических средств не является строго избирательным, часто распространяется на смежные звенья патогенеза и, таким образом, выходит за рамки предложенной классификации, которая подчеркивает лишь преимущественные эффекты, на которые рассчитано то или иное средство. К примеру, действие отрицательного давления на нижнюю половину тела, помимо перераспределения крови, сопровождается также осевой нагрузкой на организм, величина и точки приложения которой определяются особенностями конструкции вакуумной емкости. Кроме того, декомпрессия нижней половины тела способна воспроизводить и ощущения, характерные для действия силы тяжести. Применение вакуумной емкости при постельном режиме вызывает, в частности, ощущение пребывания в вертикальной позе. Другим примером профилактического воздействия, обладающего широким спектром и адресованного по-существу ко всем пусковым механизмам изменений, связанных с невесомостью, служит применение бортовых центрифуг с коротким радиусом. Тем не менее, на современном уровне знаний, теоретической и технической вооруженности достижение относительно гармоничного профилактического эффекта может быть обеспечено лишь комплексом профилактических воздействий, адресованных различным звеньям патогенетической цепи.