logo search
учебник на сайт

Основы корреляционного анализа

При анализе результатов медицинских исследований часто возникает необходимость определения достоверности полученных данных. Известны два вида связи между явлениями (признаками): функциональная и корреляционная. Функциональная связь проявляется в виде изменения одного признака при изменении числовых значений другого на строго определенную величину. Это часто бывает при физических и химических явлениях.

При корреляционных связях, характерных для медико-биологических явлений, значению одного признака соответствуют разные значения других признаков. Корреляционная связь необходима, например, при оценке взаимосвязей между стажем работы и уровнем заболеваемости работающих; между разными уровнями физических факторов окружающей среды и состоянием здоровья; между различными уровнями интенсивности нагрузки и частотой (уровнем) физиологических реакций организма; между сроками госпитализации и частотой осложнений.

Корреляционная связь бывает прямая (при увеличении одного признака увеличивается другой) и обратная (при увеличении одного показателя другой уменьшается). Коэффициент корреляции свидетельствует не только о направлении связи, но и об уровне этой связи. Сильная связь выражается коэффициентом от 0,7 до 0,99, средняя – от 0,3 до 0,69, слабая – до 0,29. При нулевом значении коэффициента связи отсутствуют.

Наиболее простыми являются ранговая корреляция и коэффициент корреляции. При ранговой корреляции числовые выражения сравниваемых рядов величин ранжируют, то есть проставляют ранговые цифры (от 1 и далее) и подставляют значения в формулу с учетом разницы порядковых значений.

При расчете коэффициента корреляции сначала вычисляют среднее значение в каждом вариационном ряду сравниваемых групп. Затем находят отклонение каждой величины ряда от полученной средней. Для устранения отрицательных значений эти величины возводят в квадрат и подставляют в формулу. По величине коэффициента устанавливают направление и силу связи. Достоверность коэффициента определяют по табличным значениям и при расчете средней ошибки. Коэффициент корреляции должен превышать свою ошибку не менее чем в 3 раза.