logo
otvety_moi_na_voprosy_po_ozz

127 Динамические ряды и их анализ.

Динамические ряды — используются при изучении динамики показателей ОЗЗ и позволяют количественно определить происходящие изменения. Это ряд однородных статистических величин, показывающих изменение явления во времени. Динамический ряд может быть представлен абсолютными числами (изменение числа больных), средними величинами (среднее число лабораторных анализов за неделю) и относительными показателями (изменение рождаемости, заболеваемости, травматизма, обеспеченности врачами). Если состоит из абс, отн и сред это простой динамический ряд, если из отн и сред то сложный. Простой динамический ряд 2 – х типов: 1) моментный, характеризующий явление на определённую дату (число коек на 1.01.2005) 2) интервальный ряд (ряд чисел характеризующих какое – либо явление, его изменение за определённый интервал времени) Числа, из которых состоит динамический ряд, называются уровнями ряда. Анализ динамического (временного) ряда сводится к вычислению следующих показателей: Абсолютный прирост представляет собой разность между последующим и предыдущим уровнем. Темп роста или убыли — это отношение последующего уровня к предыдущему, умноженное на 100%.Темп прироста является отношением абсолютного прироста (снижения) к предыдущему уровню, умноженным на 100%. Значение 1% прироста определяется отношением абсолютного прироста к темпу прироста.

130 Методика преобразования динамического ряда, практическое использование.

Важнейшим способом количественного выражения общей тенденции изменения уровней динамического ряда является аналитическое выравнивание ряда динамики, которое позволяет получить описание плавной линии развития ряда. При этом эмпирические уровни заменяются уровнями, которые рассчитываются на основе определенной кривой, где уравнение рассматривается как функция времени. Вид уравнения зависит от конкретного характера динамики развития. Его можно определить как теоретически, так и практически. Теоретический анализ основывается на рассчитанных показателях динамики. Практический анализ - на исследовании линейной диаграммы.

Задачей аналитического выравнивания является определение не только общей тенденции развития явления, но и некоторых недостающих значений как внутри периода, так и за его пределами. Способ определения неизвестных значений внутри динамического ряда называют интерполяцией. Эти неизвестные значения можно определить:

1) используя полусумму уровней, расположенных рядом с интерполируемыми;

2) по среднему абсолютному приросту;

3) по темпу роста.

Способ определения количественных значений за пределами ряда называют экстраполяцией. Экстраполирование используется для прогнозирования тех факторов, которые не только в прошлом и настоящем обусловливают развитие явления, но и могут оказать влияние на его развитие в будущем.

Экстраполировать можно по средней арифметической, по среднему абсолютному приросту, по среднему темпу роста.