Вопрос 83. Хемосинтез. Гетеротрофная ассимиляция. Обмен жиров и белков
1. Хемосинтез
2. Гетеротрофная ассимиляция
3. Метаболизм жиров и белков
1. Помимо фотосинтеза существует еще одна форма автотрофной ассимиляции — хемосинтез, свойственный некоторым бактериям. В отличие от фотосинтеза источником энергии здесь служит не свет, а окисление неорганических веществ. Хемосинтез, как и фотосинтез, включает:
• преобразование энергии;
• преобразование вещества.
При превращении веществ из СО2 образуются (в основном таким же путем, как при фотосинтезе) органические ассимилянты, в частности углеводы (получаются в результате окисления неорганических веществ, например H2S).
Часть электронов, отнятых у неорганических веществ (окисление!), переносится на NAD (например, H2S + NAD+ —> S + NAD 4 H + Н+) и используется для восстановления при превращении веществ. Другая часть через цепь транспорта электронов направляется к кислороду и доставляет энергию для синтеза АТР, подобно тому, как это происходит в цепи дыхания.
2. Гетеротрофные клетки должны потреблять в качестве пищи органические вещества. Гетеротрофная ассимиляция сводится в основном к процессам перестройки молекул. Например, поглощаемые белки расщепляются до аминокислот, из которых вновь синтезируются белки, свойственные данному организму. Необходимую для этого энергию доставляют процессы диссимиляции. Многие плесневые грибы обладают многообразием путей метаболизма. При этом организму достаточно одного-единственного органического вещества, чтобы синтезировать все необходимые соединения. Представители различных классов веществ превращаются друг в друга:
• аминокислоты в углеводы;
• углеводы в жиры и т. д.
Большинство других организмов из-за ограниченной способности к синтезу должны получать совершенно определенные (так называемые незаменимые) органические вещества, например аминокислоты. Обмен веществ у гетеротрофных клеток в основном катаболический, так как ассимиляция у них включает как катаболические, так и анаболические реакции, а диссимиляция — только катаболические.
В автотрофных клетках в связи с питанием неорганическими веществами преобладают анаболические реакции — приблизительно в той же мере, в какой ассимиляция преобладает у них над диссимиляцией.
3. Жиры — отличные субстраты для дыхания. Они гидролизуются до глицерина и жирных кислот. Глицерин превращается в дигидроксиацетонфосфат, используемый в процессе гликолиза. Жирные кислоты в процессе окисления постепенно расщепляются до ацетильных остатков, которые в форме ацетил-коэнзима А (ацетил-СоА) поступают в цикл лимонной кислоты: С17Н35СООН + 9СоА - SH + 7Н2О -» 9СоА - S ~ СОСН3 + 16[Н2].
Биосинтез жирных кислот начинается с ацетил-СоА, но идет не по тому пути, по которому они расщепляются. Биосинтез глицерина начинается с дигидроксиацетонфосфата. Белки расщепляются протеазами. Освобождающиеся 20 различных аминокислот используются организмом по-разному.
• для синтеза новых белков;
• различными путями распадаются до пирувата, ацетил-СоА и промежуточных продуктов цикла лимонной кислоты:
• альфа-кетоглутарата;
• сукцината;
. фумарата;
• малата;
• оксалоацетата.
Продукты расщепления аминокислот могут также использоваться для синтеза углеводов (глюконеогенез) или вьщеляться в органической форме.
Микроорганизмы и растения способны синтезировать все 20 аминокислот. Пути синтеза их углеродных скелетов ответвляются от процессов ассимиляции или диссимиляции. По исходному веществу аминокислоты подразделяются на ряд групп. Аминогруппы образуются из поглощенного азота, чаще всего неорганического.
- Вопрос 1. Введение в биологию
- Вопрос 2. Методы биологических наук
- Вопрос 3. Этапы развития биологии
- Вопрос 4. Роль биологии в системе медицинского образования
- Вопрос 5. Обмен веществ и энергии
- Вопрос 6. Раздражимость
- Вопрос 7. Репродукция. Наследственность и изменчивость
- Вопрос 8. Индивидуальное развитие
- Вопрос 9. Учение об организации живого
- Вопрос 10. Молекулярный, клеточный, тканевый уровни
- Вопрос 11. Организменный, популяционно-видовой, биоценотический и биосферный уровни
- Вопрос 12. Клетка как структурная единица. Строение клетки
- Вопрос 13. Неклеточные формы жизни
- Вопрос 14. Клеточные формы жизни
- Вопрос 15. Эукариотические и прокариотические клетки
- Вопрос 16. Цитоплазма. Рибосомы и плазм иды
- Вопрос 17. Мембраны, их молекулярная структура
- Вопрос 18. Плазматическая мембрана
- Вопрос 19. Система эндомембран.
- Вопрос 20. Система Гольджи
- Вопрос 21. Пузырьки, эндо-и экзоцитоз
- Вопрос 22. Лизосомы
- Вопрос 23. Микротельца
- Вопрос 24. Вакуоли. Параплазматические (эргастические) включения
- Вопрос 25. Структура и функции митохондрий
- Вопрос 26. Генетическая система митохондрий
- Вопрос 27. Пластиды. Структура и функции хлоропластов
- Вопрос 28. Пластиды. Лейкопласты и хромопласты
- Вопрос 29. Развитие пластид
- Вопрос 30. Филогенез митохондрий и пластид
- Вопрос 31. Микрофиламенты и внутриклеточные движения
- Вопрос 32. Трубчатые (тубулярные) структуры
- Вопрос 33. Центриоли и базальные тельца. Жгутики и реснички
- Вопрос 34 Веретено деления
- Вопрос 35. Строение клеточного ядра. Нуклеоплазма
- Вопрос 36. Хромосомы
- Вопрос 37. Хроматин. Хромосомная днк
- Вопрос 38. Набор хромосом
- Вопрос 39. Ядрышко и ядерная оболочка
- Вопрос 40. Размножение. Бесполое размножение одноклеточных
- Вопрос 41. Вегетативное (бесполое) размножение многоклеточных
- Вопрос 42. Половое размножение одноклеточных
- Вопрос 43. Половое размножение многоклеточных. Строение половых клеток (гамет)
- Вопрос 44. Гаметогенез
- Вопрос 45. Мейоз
- Вопрос 46. Оплодотворение
- Вопрос 47. Моноспермия и полиспермия. Партеногенез
- Вопрос 48. Андрогенез и гиногенез
- Вопрос 49. Биологическая роль полового размножения
- Вопрос 50. Понятие о наследственности и изменчивости
- Вопрос 51. Закономерности наследования
- Вопрос 52. Моногибридное скрещивание. Правило единообразия гибридов первого поколения
- Вопрос 53. Правило расщепления
- Вопрос 54. Гипотеза "чистоты" гамет и анализирующее скрещивание. Неполное доминирование
- Вопрос 55. Полигибридное (дигибридное) скрещивание. Правило независимого комбинирования признаков
- Вопрос 56. Взаимодействие генов. Комплементарное действие
- Вопрос 57. Эпистаз. Полимерия и плейотропия
- Вопрос 58. Множественные аллели. Наследование групп крови у человека
- Вопрос 59. Наследование пола. Признаки, сцепленные с полом
- Вопрос 60. Сцепление генов и кроссинговер
- Вопрос 61. Линейное расположение генов. Генетические карты
- Вопрос 62. Трансформация. Трансдукция
- Вопрос 63. Основы молекулярной генетики. Структура гена. Коллинеарность
- Вопрос 64. Репарация
- Вопрос 65. Особенности передачи наследственной информации у про- и эукариот
- Вопрос 66. Генная инженерия. Современное состояние теории гена
- Вопрос 67. Нехромосомная наследственность
- Вопрос 68. Наследственность и среда. Фенотипическая (ненаследственная) изменчивость
- Вопрос 69. Генотипичоская (наследственная) изменчивость
- Вопрос 70. Хромосомные и генные изменения
- Вопрос 71. Химический и радиационный мутагенез. Гомологические ряды в наследственной изменчивости
- Вопрос 72. Особенности генетики человека. Методы изучения наследственности у человека
- Вопрос 73. Популяционно-статистический метод. Биохимический метод
- Вопрос 74. Хромосомные болезни
- Вопрос 75. Наследование резус-фактора
- Вопрос 76. Генные мутации как причина наследственных болезней
- Вопрос 77. Генокопии и фенокопии в патологии человека. Критика представлений о фатальности наследственных заболеваний. Евгенетика
- Вопрос 78. Влияние факторов внешней среды в онтогенезе организма. Основные закономерности эмбрионального развития
- Вопрос 79. Гистогенез и органогенез
- Вопрос 80. Ассимиляция и фотосинтез. Преобразование энергии при фотосинтезе
- Вопрос 81 Фотосистемы I, II. Линейный (нециклический) фотоперенос электронов. Фотолиз воды и фотофосфорилирование
- Вопрос 82. Превращение веществ при фотосинтезе (темновой процесс)
- Вопрос 83. Хемосинтез. Гетеротрофная ассимиляция. Обмен жиров и белков
- Вопрос 84. Регуляция активности ферментов