Вопрос 63. Основы молекулярной генетики. Структура гена. Коллинеарность
/. Ген — часть хромосомы
2. Цистрон, его структура
3. Различия между функциями генов. Опероны
4. Явление коллинеарности
1. Изучение химической структуры ДНК и генетических функций позволяет рассматривать гены как участки нуклеиновой кислоты, характеризующиеся определенной специфической последовательностью нуклеотидов. Расшифровка материальной сущности гена — одно из важных достижений современной биологической науки.
Первоначально считалось, что гены представляют собой часть хромосомы и являются неделимой единицей, обладающей рядом свойств:
• способностью определять признаки организма;
• способностью к рекомбинации, т. е. перемещению из одной гомологической хромосомы в другую при кроссинговере;
• способностью мутировать, давая новые аллельные гены.
В дальнейшем оказалось, что ген представляет собой сложную систему, в которой указанные способности не всегда бывают нераздельными.
Первые представления о сложной структуре гена возникли еще в 20-х гг. XX столетия. Советские генетики А. С. Серебровский и Н.П. Дубинин выдвинули предположение, что ген состоит из отдельных "ступенек". В настоящее время это блестяще подтвердилось новыми исследованиями. Ген представляет собой часть молекулы ДНК и состоит из сотен пар нуклеотидов.
2. Ген как функциональную единицу предложено называть цис-троном, который определяет последовательность аминокислот в каждом специфическом белке. Цистрон подразделяется на предельно малые в линейном измерении единицы - реконы, способные к рекомбинации при кроссинговере.
Выделяют, кроме того, мутоны — наименьшие части гена, способные к изменению (мутированию). Размеры рекона и мутона могут равняться одной или нескольким парам нуклеотидов, цистрона - сотням и тысячам нуклеотидов.
3. Оказалось, что разные функции гена связаны с отрезками цепи ДНК различной величины. Ген имеет сложную структуру, внутри которой могут осуществляться процессы мутирования и рекомбинации. Обнаружены также гены, которые не контролируют синтеза белков, но регулируют этот процесс. Таким образом, возникла необходимость разделить гены на две категории:
• структурные;
- функциональные.
Структурные гены определяют последовательность аминокислот в полипептидной цепи. У тех бактерий, у которых они изучены, структурные гены, как правило, располагаются в хромосоме в последовательности, соответствующей кодируемым реакциям.
Функциональные гены, по-видимому, не образуют специфических продуктов, которые можно обнаружить в цитоплазме. Эти гены контролируют функцию других генов. Один из функциональных генов получил название гена-оператора. Ген-оператор и ряд структурных генов, расположенных рядом в линейной последовательности, составляют оперон — единицу считывания генетической информации, т. е. с каждого оперона снимается своя молекула информационной РНК. Функция гена-оператора регулируется геном-регулятором. Он кодирует синтез белка-репрессора. Наличие или отсутствие этого белка,
присоединяющегося к гену-оператору, определяет начало или прекращение считывания информации.
4. Коллинеарность — свойство, обусловливающее соответствие между последовательностью кодонов нуклеиновых кислот и аминокислот полипептидных цепей. Иными словами, коллинеарность - свойство, благодаря которому в белке воспроизводится та же последовательность аминокислот, в какой соответствующие кодоны располагаются в гене. Это означает, что положение каждой аминокислоты в полипептидной цепи зависит от особого участка гена.
Генетический код считается коллинеарным, если кодоны нуклеиновых кислот и соответствующие им аминокислоты в белке расположены в одинаковом линейном порядке.
Явление коллинеарности доказано экспериментально. Серповидно клеточная анемия, при которой нарушено строение молекулы гемоглобина, обусловлена дефектами расположения нуклеотидов в гене, ответственном за синтез гемоглобина. Было установлено расстояние между аминокислотами, зависимыми от этих мутаций, и расположение мутонов на генетической карте гена триптофансинтетазы, совпадающее с расположением аминокислот в этом ферменте. Аминокислоты заменялись в соответствии с изменением нуклеотидного состава соответствующих триплетов.
Гипотеза о том, что последовательность аминокислот в белке определяется последовательностью нуклеотидов в гене, была высказана Г.А. Гамовым. Данные о коллинеарности полипептидов подтвердили ее. Благодаря концепции коллинеарности можно:
• определить примерный порядок нуклеотидов внутри гена и информационной РНК, если известен состав полипептидов;
• предсказать аминокислотный состав белка, определив состав нуклеотидов ДНК;
• сделать вывод, что изменение порядка нуклеотидов внутри гена (мутация) приводит к изменению аминокислотного состава белков.
- Вопрос 1. Введение в биологию
- Вопрос 2. Методы биологических наук
- Вопрос 3. Этапы развития биологии
- Вопрос 4. Роль биологии в системе медицинского образования
- Вопрос 5. Обмен веществ и энергии
- Вопрос 6. Раздражимость
- Вопрос 7. Репродукция. Наследственность и изменчивость
- Вопрос 8. Индивидуальное развитие
- Вопрос 9. Учение об организации живого
- Вопрос 10. Молекулярный, клеточный, тканевый уровни
- Вопрос 11. Организменный, популяционно-видовой, биоценотический и биосферный уровни
- Вопрос 12. Клетка как структурная единица. Строение клетки
- Вопрос 13. Неклеточные формы жизни
- Вопрос 14. Клеточные формы жизни
- Вопрос 15. Эукариотические и прокариотические клетки
- Вопрос 16. Цитоплазма. Рибосомы и плазм иды
- Вопрос 17. Мембраны, их молекулярная структура
- Вопрос 18. Плазматическая мембрана
- Вопрос 19. Система эндомембран.
- Вопрос 20. Система Гольджи
- Вопрос 21. Пузырьки, эндо-и экзоцитоз
- Вопрос 22. Лизосомы
- Вопрос 23. Микротельца
- Вопрос 24. Вакуоли. Параплазматические (эргастические) включения
- Вопрос 25. Структура и функции митохондрий
- Вопрос 26. Генетическая система митохондрий
- Вопрос 27. Пластиды. Структура и функции хлоропластов
- Вопрос 28. Пластиды. Лейкопласты и хромопласты
- Вопрос 29. Развитие пластид
- Вопрос 30. Филогенез митохондрий и пластид
- Вопрос 31. Микрофиламенты и внутриклеточные движения
- Вопрос 32. Трубчатые (тубулярные) структуры
- Вопрос 33. Центриоли и базальные тельца. Жгутики и реснички
- Вопрос 34 Веретено деления
- Вопрос 35. Строение клеточного ядра. Нуклеоплазма
- Вопрос 36. Хромосомы
- Вопрос 37. Хроматин. Хромосомная днк
- Вопрос 38. Набор хромосом
- Вопрос 39. Ядрышко и ядерная оболочка
- Вопрос 40. Размножение. Бесполое размножение одноклеточных
- Вопрос 41. Вегетативное (бесполое) размножение многоклеточных
- Вопрос 42. Половое размножение одноклеточных
- Вопрос 43. Половое размножение многоклеточных. Строение половых клеток (гамет)
- Вопрос 44. Гаметогенез
- Вопрос 45. Мейоз
- Вопрос 46. Оплодотворение
- Вопрос 47. Моноспермия и полиспермия. Партеногенез
- Вопрос 48. Андрогенез и гиногенез
- Вопрос 49. Биологическая роль полового размножения
- Вопрос 50. Понятие о наследственности и изменчивости
- Вопрос 51. Закономерности наследования
- Вопрос 52. Моногибридное скрещивание. Правило единообразия гибридов первого поколения
- Вопрос 53. Правило расщепления
- Вопрос 54. Гипотеза "чистоты" гамет и анализирующее скрещивание. Неполное доминирование
- Вопрос 55. Полигибридное (дигибридное) скрещивание. Правило независимого комбинирования признаков
- Вопрос 56. Взаимодействие генов. Комплементарное действие
- Вопрос 57. Эпистаз. Полимерия и плейотропия
- Вопрос 58. Множественные аллели. Наследование групп крови у человека
- Вопрос 59. Наследование пола. Признаки, сцепленные с полом
- Вопрос 60. Сцепление генов и кроссинговер
- Вопрос 61. Линейное расположение генов. Генетические карты
- Вопрос 62. Трансформация. Трансдукция
- Вопрос 63. Основы молекулярной генетики. Структура гена. Коллинеарность
- Вопрос 64. Репарация
- Вопрос 65. Особенности передачи наследственной информации у про- и эукариот
- Вопрос 66. Генная инженерия. Современное состояние теории гена
- Вопрос 67. Нехромосомная наследственность
- Вопрос 68. Наследственность и среда. Фенотипическая (ненаследственная) изменчивость
- Вопрос 69. Генотипичоская (наследственная) изменчивость
- Вопрос 70. Хромосомные и генные изменения
- Вопрос 71. Химический и радиационный мутагенез. Гомологические ряды в наследственной изменчивости
- Вопрос 72. Особенности генетики человека. Методы изучения наследственности у человека
- Вопрос 73. Популяционно-статистический метод. Биохимический метод
- Вопрос 74. Хромосомные болезни
- Вопрос 75. Наследование резус-фактора
- Вопрос 76. Генные мутации как причина наследственных болезней
- Вопрос 77. Генокопии и фенокопии в патологии человека. Критика представлений о фатальности наследственных заболеваний. Евгенетика
- Вопрос 78. Влияние факторов внешней среды в онтогенезе организма. Основные закономерности эмбрионального развития
- Вопрос 79. Гистогенез и органогенез
- Вопрос 80. Ассимиляция и фотосинтез. Преобразование энергии при фотосинтезе
- Вопрос 81 Фотосистемы I, II. Линейный (нециклический) фотоперенос электронов. Фотолиз воды и фотофосфорилирование
- Вопрос 82. Превращение веществ при фотосинтезе (темновой процесс)
- Вопрос 83. Хемосинтез. Гетеротрофная ассимиляция. Обмен жиров и белков
- Вопрос 84. Регуляция активности ферментов