logo
ОЗЗ

Вопрос 5. Этапы медико-статистического исследования. Генеральная и выборочная совокупности определения. Способы формирования выборочной совокупности.

Этапы – см. выше.

А) генеральная совокупность - совокупность, состоящая из всех единиц наблюдения, которые могут быть к ней отнесены в соответствии с целью исследования. При изучении общественного здоровья генеральная совокупность часто рассматривается в пределах конкретных территориальных гра­ниц или может ограничиваться другими признаками (полом, возрас­том и др.) в зависимости от цели исследования.

Б) выборочная совокупность - часть генеральной, отобранная спе­циальным (выборочным) методом и предназначенная для характерис­тики генеральной совокупности.

Требования, предъявляемые к выборочной совокупности:

1) должна быть репрезентативной, точно и полно отражать явление, т. е. давать такое же представление о явлении как если бы изучалась вся генеральная совокупность, для этого она должна:

а. быть достаточной по численности

б. обладать основными чертами генеральной совокупности (в отобранной части должны быть представлены все элементы в таком же соотношении, как и в генеральной)

2) при ее формировании должен соблюдаться Основной принцип формирования выборочной совокупности: равная возможность для каждой единицы наблюдения попасть в исследование.

См. Формирование статистической совокупности.

Существуют следующие способы отбора единиц из генеральной совокупности:

  1. индивидуальный отбор — в выборку отбираются отдельные единицы;

  2. групповой отбор — в выборку попадают качественно однородные группы или серии изучаемых единиц

  3. комбинированный отбор — это комбинация индивидуального и группового отбора.

Способы отбора определяются правилами формирования выборочной совокупности.

Выборка может быть:

собственно-случайнаясостоит в том, что выборочная совокупность образуется в результате случайного (непреднамеренного) отбора отдельных единиц из генеральной совокупности. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки. Доля выборки есть отношение числа единиц выборочной совокупности n к численности единиц генеральной совокупности N, т.е.

механическаясостоит в том, что отбор единиц в выборочную совокупность производится из генеральной совокупности, разбитой на равные интервалы (группы). При этом размер интервала в генеральной совокупности равен обратной величине доли выборки. Так, при 2%-ной выборке отбирается каждая 50-я единица (1:0,02), при 5%-ной выборке — каждая 20-я единица (1:0,05) и т.д. Таким образом, в соответствии с принятой долей отбора, генеральная совокупность как бы механически разбивается на равновеликие группы. Из каждой группы в выборку отбирается лишь одна единица.

типическая– при которой генеральная совокупность вначале расчленяется на однородные типические группы. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность. Важной особенностью типической выборки является то, что она дает более точные результаты по сравнению с другими способами отбора единиц в выборочную совокупность;

серийная- при которой генеральную совокупность делят на одинаковые по объему группы - серии. В выборочную совокупность отбираются серии. Внутри серий производится сплошное наблюдение единиц, попавших в серию;

комбинированная- выборка может быть двухступенчатой. При этом генеральная совокупность сначала разбивается на группы. Затем производят отбор групп, а внутри последних осуществляется отбор отдельных единиц.

В статистике различают следующие способы отбора единиц в выборочную совокупность:

одноступенчатая выборка- каждая отобранная единица сразу же подвергается изучению по заданному признаку (собственно-случайная и серийная выборки);

многоступенчатая выборка- производят подбор из генеральной совокупности отдельных групп, а из групп выбираются отдельные единицы (типическая выборка с механическим способом отбора единиц в выборочную совокупность).

Кроме того различают:

повторный отбор – по схеме возвращенного шара. При этом каждая попавшая в выборку единица иди серия возвращается в генеральную совокупность и поэтому имеет шанс снова попасть в выборку;

бесповторный отбор – по схеме невозвращенного шара. Он имеет более точные результаты при одном и том же объеме выборки.