3.10.2.4. Уничтожение лиганда
Последняя стадия фагоцитоза – уничтожение лиганда. Основным оружием фагоцитов являются продукты частичного восстановления кислорода – перекись водорода и так называемые свободные радикалы. Они вызывают перекисное окисление липидов, белков и нуклеиновых кислот, благодаря чему повреждается мембрана клетки.
Активация фагоцитов связана со значительными перестройками функции клетки. Она наступает уже при контакте фагоцита и фагоцитируемого комплекса. При этом происходит целый ряд морфологических и биохимических процессов, наиболее яркими из них являются усиление метаболизма, миграция, адгезия и дегрануляция.
В результате взаимодействия фагоцита и стимулятора резко увеличивается потребление клетками глюкозы, активация отдельных ферментов, образование активных форм кислорода и других прооксидантов, появление продуктов активации цикло- и липооксигеназ. Реакции эти развиваются внезапно и с чрезвычайной быстротой, что послужило поводом назвать это явление «кислородным» или «респираторным взрывом». Установлено, что после стимуляции полиморфноядерных лейкоцитов (ПЯЛ) потребление кислорода возрастает в 50-100 раз.
Общим признаком активации фагоцитов является увеличение в цитозоле содержания Са2+. Эта реакция является самым быстрым ответом на стимуляцию и осуществляется с помощью цепи довольно сложных биохимических превращений, сопровождающихся изменением фосфолипидного состава мембраны, появлением простагландинов и лейкотриенов и др. Ионы Са2+поступают в цитозоль из окружающей среды и из так называемых внутриклеточных депо.
Увеличение содержания Са2+в цитозоле лейкоцитов запускает кальций-зависимые процессы, приводящие кпраймингуклетки, что выражается в увеличении её функциональной активности, усилении синтеза биологически активных соединений, таких какNO, супероксид-анион-радикал, гипохлорид-анион, Н2О2 и др. Продукты метаболизма кислорода обладают бактерицидным эффектом, тогда как оксид азота оказывает влияние на микроциркуляцию крови, ибо он расслабляет сосуды. Последний приводит к вазодилятации и улучшению микроциркуляции. В лейкоцитах за синтезNOотвечает индуцируемаяNO-синтаза, появление которой происходит под влиянием ряда стимулов, в том числе липополисахаридов (ЛПС), цитокинов, фрагментов системы комплемента и др.In vivoиндуцируемаяNO-синтаза образуется в фагоцитах, находящихся в патологически измененных тканях, в частности, в очаге воспаления.
Наиболее ярким проявлением стимуляции фагоцитов является «кислородный взрыв», обусловленный активацией НАДФ.Н2-зависимой оксидазы.
Уже в момент контакта рецепторов с фагоцитируемым объектом наступает стимуляция оксидаз– мембранных ферментов, переносящих электроны на кислород и отнимающих их у восстановленных молекул. При образовании фаголизосомы происходит усиленная вспышка окислительных процессов внутри нее, в результате чего наступает гибель бактерий.
Известно, что нейтрофилы обладают миелопероксидазной системой, в состав которой входят миелопероксидаза, Н2О2и окисляемые кофакторы – ионы хлора, брома и йода.
Миелопероксидаза окисляет кофакторы, переводя их в активную форму, и при этом генерируются эффективные микробицидные средства. Нейтрофилы в присутствии миелопероксидазы способны продуцировать гипохлорную кислоту, обладающую вместе с Н2О2антимикробной функцией, а также увеличивающую проницаемость сосудов. Более того, активные формы кислорода, окисляя мембранные белки, способны инактивировать грамположительные и грамотрицательные бактерии, вирусы, грибки, микоплазмы.
Активированные нейтрофилы во время респираторного взрыва продуцируют Н2О2в каскаде активных форм (восстановленных метаболитов) кислорода, в числе которых супероксидный и гидроксильный радикалы, а также синглентный кислород –О2. Последний нарушает проницаемость клеточных мембран и инициирует перекисное окисление липидов. Гидроксильный радикал – продукт восстановления Н2О2 – представляет собой чрезвычайно мощный окислитель.
На фагоцитированный объект, заключенный в фагосому или фаголизосому, по системе микротрубочек изливается содержимое гранул, а также образовавшиеся метаболиты. В уничтожении бактерий внутри фагоцита принимает участие фермент лизоцим (муромидаза), вызывающий гидролиз клеточной стенки бактерий.
Ключевую роль в уничтожении лиганда играют также дефенсины– лизосомные катионные пептиды с молекулярной массой около 4-5 кДа, состоящие из 29-42 аминокислот и богатые цистеином и аргинином. Дефенсины сосредоточены в гранулах нейтрофилов. Благодаря положительному заряду, дефенсины, за счет электростатических свойств, легко взаимодействуют с отрицательно заряженными кислыми фосфолипидами, входящими в состав мембраны. В составе дефенсинов обнаружено также относительно высокое содержание аминокислот с гидрофобными боковыми цепями – лейцин, изолейцин, валин, пролин, что позволяет дефенсинам «растворяться» в липидном бислое мембран и таким образом создавать мембранные каналы, способные пропускать ионы и небольшие молекулы. Следовательно, дефенсины являются молекулярными перфораторами мембраны, что и лежит в основе их повреждающего действия мембраны бактериальных клеток, некоторых простейших и грибков.
Кроме того, фагоцитированный объект может быть уничтожен за счет действия катионных белков, изменяющих поверхностные свойства мембраны; влияниялактоферрина, конкурирующего за ионы железа; различныхпротеолитических и липолитическихферментов, содержащихся в гранулах фагоцитов и разрушающих мембрану чужеродных и старых клеток, бактерий и вирусов.
Следует обратить особое внимание на то, что стимуляция макрофагов сопровождается секрецией медиаторов воспаления, среди которых особой активностью отличаются TNF, IF, IL-8 и IL-16. Все они являются активными пептидами и, действуя совместно сбрадикининоми фрагментами комплементаС3а и С5а, усиливают фагоцитарную активность лейкоцитов.
Как мы уже отмечали ранее, наряду с завершенным, нередко встречается так называемый незавершенный фагоцитоз. В чем же дело, почему фагоциты не всегда способны справиться с бактериями?
У бактерий существуют три «линии обороны», благодаря которым они способны выживать в организме человека и животных. Первая из них – толстая оболочка бактерий с высокой концентрацией антиоксидантов, нейтрализующих значительную часть активных форм кислорода. Если эта линия обороны будет прорвана фагоцитом, то «в бой» вступают особые участки генетического аппарата, начинающего вырабатывать большое количество каталазы, супероксидисмутазы и других ферментов, разрушающих пероксиды. Второй эшелон обороны сможет сдержать наступление фагоцита лишь в том случае, если активно будут работать все составные части клетки. Но существует еще и третья линия обороны.
В конце прошлого века было установлено, что под воздействием окислительного стресса в бактериях накапливается органическое соединение фосфора, получившее наименование метилэритрит циклопирофосфат (МЭЦ). В дальнейшем было установлено, что МЭЦ является промежуточным соединением в синтезе изопреноидов, стероидов, каротиноидов и других веществ, столь необходимых не только для жизни бактерий, но и любой живой клетки. В то же время под влиянием МЭЦ усиливается токсичность воздействия бактерий на клетки хозяина, в том числе и фагоциты. Следовательно, МЭЦ может считатьсяфактором вирулентности.
Вероятно, существуют и иные механизмы, позволяющие бактериям (в частности, микобактериям) бороться за свою жизнь внутри фагоцита. Находясь в фагосоме, некоторые бактерии, по всей видимости, выделяют особые биологически активные соединения пептидной природы, действующие на макрофаг или иные фагоциты и подавляющие их активность.
Фагоцитам отводится определённая роль в уничтожении раковых клеток. Но клетка – слишком большой объект для фагоцитоза. В подобной ситуации фагоцит, сближаясь с мишенью, выделяет цитолитические агенты и разрушает клетку. Точно так же могут быть атакованы клетки, зараженные вирусом, крупные микроорганизмы, многоклеточные паразиты, поврежденные клеточные структуры и другие. Из сказанного становится ясно, что не всегда необходим фагоцитоз для уничтожения чужеродных объектов. Лизосомы могут подходить к мембране клетки и, соединяясь с ней, выбрасывать свой секрет, уничтожающий чужеродную клетку.
Фагоцитарной активностью обладают не только макрофаги, моноциты и нейтрофилы. Фагоцитоз осуществляется также эозинофилами и тромбоцитами. И хотя кровяные пластинки способны захватывать незначительное количество бактерий, необходимо учитывать, что их число значительно (в несколько десятков раз) превышает содержание нейтрофилов и моноцитов.
Важная роль в неспецифической резистентности организма принадлежит бактериальной активности сыворотки, которая во многом зависит от содержания особых соединений, способных ферментативным путем уничтожать спорообразующие грамположительные бактерии и получивших наименование -лизины.
Пиноцитоз. Лейкоциты фагоцитируют не только «твердые» частицы, чужеродные клетки, бактерии, вирусы, но способны поглощать из окружающей среды частицы жидкости, в том числе капельки белка. Это явление получило наименование пиноцитоза. По своему механизму пиноцитоз мало отличается от фагоцитоза, за исключением последней стадии – переваривания, которая осуществляется главным образом за счет действия лизосомальных ферментов.
- Министерство здравоохранения российской федерации
- Читинская государственная медицинская академия
- Кузник б. И.
- Физиология и патология системы крови
- Чита 2002
- Предисловие
- Основные термины и их условные обозначения
- Внутренняя среда организма
- 1. Тканевая жидкость
- 2. Лимфа
- 2.1. Состав лимфы
- Функции лимфы
- 2.3. Теоретические основы лимфотропной терапии
- 3. Система крови
- Основные функции крови
- 3.2. Количество крови в организме
- 3.3. Депо крови
- Состав плазмы крови
- 3.5. Белки плазмы крови
- Белки плазмы у детей разного возраста
- 3.5.2. Острофазные белки и их значение для организма
- 3.6. Краткие сведения о процессах свободнорадикального (сро) и перекисного окисления липидов (пол)
- 3.7. Физико-химические свойства крови
- 3.7.1. Особенности физико-химических свойств крови ребенка
- 3.8. Сосудистый эндотелий как эндокринная сеть
- 3.9. Форменные элементы крови
- 3.9.1. Эритроциты
- 3.9.2. Гемоглобин и его соединения
- 3.9.3. Цветовой показатель и абсолютное содержание гемоглобина в одном эритроците
- 3.9.4. Деформируемость эритроцитов
- 3.9.5. Гемолиз
- 3.9.6. Функции эритроцитов
- 3.9.7. Эритрон
- 3.9.8. Гемопоэз. Немного истории.
- 3.9.8.1. Основные условия нормального гемопоэза
- 3.9.8.2. Физиология эритропоэза
- 3.9.8.3. Факторы, обеспечивающие эритропоэз
- 3.9.8.4. Нервная регуляция эритропоэза
- 3.9.8.5. Особенности эритропоэза у плода и ребенка
- 3.9.9. Лейкоциты
- 3.9.9.1. Физиологические лейкоцитозы
- 3.9.9.2. Лейкоцитарная формула
- 3.9.9.3. Характеристика отдельных видов лейкоцитов
- 3.9.9.4. Физиология лейкопоэза
- 3.9.9.5. Факторы, обеспечивающие лейкопоэз
- 3.9.9.6. Особенности белой крови у плода и ребенка
- 3.10. Неспецифическая резистентность
- 3.10.1. Адгезивные молекулы и их основные функции
- 3.10.2. Фагоцитоз
- 3.10.2.1. Движение фагоцита к лиганду
- 3.10.2.2. Контакт фагоцита и лиганда
- 3.10.2.3. Поглощение лиганда
- 3.10.2.4. Уничтожение лиганда
- 3.10.3. Система комплемента
- 3.10.4. Особенности неспецифической резистентности у плода и ребенка
- 3.11. Иммунитет
- 3.11.1. Общая характеристика антигенов
- 3.11.2. Антигены главного комплекса гистосовместимости
- 3.11.3. Характеристика основных классов иммуноглобулинов
- 3.11.4. Представление о клеточном и гуморальном иммунитете
- 3.11.5. Лимфоциты
- 3.11.5.1. Характеристика лимфоцитов
- 3.11.6. Моноциты и макрофаги
- 3.11.7. Цитокины
- Функции цитокинов
- 3.11.7.1. Провоспалительные цитокины
- 3.11.7.2. Противовоспалительные цитокины
- 3.11.7.3. Цитокины, регулирующие иммунный ответ
- 3.11.8. Стадии иммунного ответа
- 3.11.9. Взаимодействие клеток в иммунном ответе
- 3.11.10. Супрессия иммунного ответа
- 3.11.11. Местный иммунитет
- 3.11.12. Регуляция иммунитета
- 3.11.13. Иммунитет как регуляторная система
- 3.11.14. Апоптоз
- 3.11.15. Особенности иммунной защиты у плода и ребенка
- 3.11.16. Основные направления иммуномодулирующей терапии
- 3.12. Группы крови
- 3.12.1. Немного истории
- 3.12.2. Система ab0
- Серологический состав основных групп крови (система ав0)
- 3.12.3. Система резус (Rh) и другие
- 3.12.4. Группы крови и заболеваемость
- 3.12.5. Расовые особенности групп крови
- 3.12.6. Наследование групп крови
- 3.12.7. Формирование групп крови у плода и детей
- 3.12.8. Искусственная кровь
- 3.13. Тромбоциты
- 3.13.1. Функции тромбоцитов
- 3.13.2. Регуляция тромбоцитопоэза
- 3.13.3. Тромбоциты у плода и ребенка
- 3.14. Система гемостаза
- 3.14.1. Сосудисто-тромбоцитарный гемостаз
- 3.14.1.1. Сосудисто-тромбоцитарный гемостаз у ребенка
- 3.14.2. Процесс свертывания крови
- 3.14.2.1. Плазменные и клеточные факторы свертывания крови
- 3.14.2.2. Механизм свертывания крови
- 3.14.2.2.1. Образование протромбиназы и тромбина
- 3.14.2.2.2. Переход фибриногена в фибрин
- 3.14.2.3. Естественные антикоагулянты
- 3.14.2.4. Фибринолиз
- 3.14.2.5. Регуляция сосудисто-тромбоцитарного гемостаза, свертывания крови и фибринолиза
- 3.14.2.6. Особенности коагуляционного гемостаза у плода и ребенка
- 3.14.3. Патогенетические аспекты тромбофилий
- 3.14.4. Диссеминированное внутрисосудистое свертывание крови (двс)
- 3.15. Калликреин-кининовая система
- 3.16. Ренин-ангиотензин-альдостероновая система
- 4. Защитные функции полости рта
- 5. Инструментальные методы исследования системы крови
- Заключение
- 6. Основные физиологические константы крови
- Рекомендуемая литература
- Оглавление
- Внутренняя среда организма . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5