3. Регуляция микроциркуляторного кровотока.
Закономерности регуляции кровотока и реологические характеристики крови в микроциркуляторном русле имеют существенные особенности по сравнению с системной циркуляцией.
Из всех сосудов микроциркуляторного русла только артериолы обладают механизмом активного мышечного сокращения. Капилляры не иннервируются и лишены гладкомышечных элементов; не снабжено нервами и большинство метартериол. В венулах иннервация и сократительные элементы представлены относительно скудно. Поэтому решающую роль в определении давления и кровотока в микроциркуляторном русле играет состояния внутриорганных артериол, а также сфинктеров, открывающих или перекрывающих те или иные пути кровотока.
В целом, в определении параметров микроциркуляторного русла, в отличие от поддержания системных констант кровообращения, местные регуляторные контуры доминируют над действием центральных нейроэндокринных механизмов, а гуморальная регуляция преобладает над рефлекторными взаимодействиями.
Нейрогенные воздействия в микроциркуляторном русле представлены ограничено и адресованы, прежде всего, артериолам. Они исходят от симпатических вазоконстрикторов, терминали которых выделяют норадреналин, действующий через 1 - рецепторы и симпатических вазодилятаторов, выделяющих адреналин, действующий через2 - рецепторы гладкомышечных клеток.
Отсутствие иннервации значительной части микрососудов заставляет оценить особую роль местного спонтанного компонента базального сосудистого тонуса, определяемого автоматической сократительной активностью самих миоцитов, возникающего вследствие внутренней нестабильности их мембран и распространяющегося на соседние клетки. Миогенная активность усиливается растяжением под влиянием давления крови. Миогенной активности все время препятствуют постоянно образующиеся тканевые метаболиты, обладающие сосудорасширяющим действием.
Изменение базального тонуса – главный механизм регуляции местного кровотока.
В определенных патологических ситуациях и при адаптивных реакциях влияние на сосуды микроциркуляторного русла оказывают системные гуморальные воздействия (гормоны мозгового вещества надпочечников, ангиотензины, вазопрессин).
Гораздо большее значение для микроциркуляции имеют наиболее мощные из всех вазоконстрикторов – паракринные пептиды – эндотелины, вырабатываемые клетками внутреннего эпителия сосудов в ответ на механическое воздействие, тромбин и норадреналин. Это эффективные местные вазоконстрикторы. Эндотелин-3 действует в сосудах мозга, кишечника и почек; эндотелин-2 – в сосудах почек и кишечника, эндотелин-1 – универсален.
Сильными вазоконстрикторами паракринного действия служат лейкотриены, нейропептид Y.
К гуморальным вазодилятаторам относятся простагландины, кинины, гистамин, вещество Р, предсердный нейроуретический гормон, вазоактивный интестинальный пептид.
Существует также гистометаболический механизм регуляции сосудистого тонуса под влиянием вазоактивных метаболитов тканевого обмена (СО2 , азота). Окись азота – главный паракринный вазодилятатор. Кислородзависимый механизм основан на свойстве миоцитов расслабляться при гипоксии даже в отсутствие вазодилятаторов. Длительная гипоксия или гиперфункция органов и тканей вводит в действие хронические механизмы адаптации микроциркуляторного русла, основанные на ангиогенезе – гиперплазии микрососудов. Макрофаги и тромбоциты выделяют факторы ангиогенеза, среди которых важная роль принадлежит фактору некроза опухоли (ФНО) и тромбоцитарным факторам роста.
2. Кроме диффузии имеется еще механизм, обеспечивающий обмен между внутрисосудистым и межклеточным пространством - это фильтрация и реабсорбция , происходящие в терминальном русле . Между объемами жидкости, фильтрующейся в артериальном конце капилляров и реабсорбирующейся в их венозном конце (или удаляемой лимфатическими сосудами ), в норме существует динамическое равновесие. Если это равновесие нарушается, происходит довольно быстрое перераспределение внутрисосудистого и межклеточного объема жидкости. Это перераспределение оказывает существенное влияние на функции сердечно - сосудистой системы, тем более, что внутрисосудистый объем жидкости должен поддерживаться на уровне, соответствующем потребностям организма.
Интенсивность фильтрации и реабсорбции в капиллярах определяется гидростатическим давлением в капиллярах , гидростатическим давлением в тканевой жидкости , онкотическим давлением плазмы в капилляре , онкотическим давлением тканевой жидкости и коэффициентом фильтрации. Под действием гидростатического давления в капиллярах и онкотического давления тканевой жидкости жидкость выходит из капилляра в ткани, а под действием гидростатического давления в тканевой жидкости и онкотического давления плазмы в капилляре - наоборот. Коэффициент фильтрации соответствует проницаемости капиллярной стенки для изотонических растворов.
Средняя скорость фильтрации во всех капиллярах организма составляет около 14 мл в мин, или 20 л в сутки. Скорость реабсорбции равна примерно 12,5 мл в 1 мин, т.е. 18 л в сутки. По лимфатическим сосудам оттекает 2 л в сутки.
Фильтрация возрастает при общем увеличении кровяного давления , при расширении резистивных сосудов во время мышечной деятельности , при перходе в вертикальное положение, при увеличении объема крови вследствие вливаний различных растворов, при повышении венозного давления (например, при сердечной недостаточности ). Реабсорбция увеличивается при снижении кровяного давления , сужении резистивных сосудов , кровопотере и т.д. Фильтрация повышается также при снижении онкотического давления плазмы (например, при гипопротеинемии ) или при накоплении осмотически активных веществ в интерстициальной жидкости . Выход жидкости в интерстициальное пространство увеличивается при повышении проницаемости капилляров, которое может быть обусловлено действием кининов , гистамина и подобных ему веществ и других агентов, выделяющихся при аллергических реакциях , воспалении , ожогах и т.д. Если в результате недостаточной реабсорбции в капиллярах тканевая жидкость начинает накапливаться, то она быстрее удаляется по лимфатическим сосудам. Поскольку при этом из интерстициального пространства выводятся белки, онкотическое давление в нем падает, а это приводит к угнетению выхода воды в ткани и тем самым способствует поддержанию равновесия между внутрисосудистым и интерстициальным объемами жидкости .
3. ровоснабжение органов полости рта осуществляется через наружную сонную артерию и ее ветви: верхнечелюстная артерия питает челюсти, зубы и слизистую оболочку, нижняя луночковая артерия снабжает кровью периодонт и десну, щечная, задняя верхняя альвеолярная и подглазничная артерии питают слизистую преддверия рта и десны верхней челюсти. Вены, сопровождающие эти артерии, впадают во внутреннюю яремную вену.
Кровоснабжение пульпы зуба осуществляется артериями, входящими через верхушечное отверстие корневого канала. Кроме них есть артерии, входящие в пульпу через дополнительные отверстия в области верхушек корней. Таким образом, несмотря на то, что диаметр отдельных кровеносных сосудов невелик, общий диаметр сосудов, снабжающих пульпу кровью, вполне достаточен для ее нормального питания.
В пульпе корня от артерий отделяется небольшое число веточек, и лишь в пульпе коронки происходит образование обильной сосудистой сети. Под слоем одонтобластов и в самом слое образуется своеобразное сосудистое сплетение из артериол и капилляров, анастамозирующих между собой.
В пульпе зуба имеются своеобразные сосуды-резервуары, называемые гигантскими капиллярами, по ходу которых образуются своеобразные вздутия и синусы, играющие роль своеобразных демпферов. Капиллярная сеть особенно обширна в области одонтобластов, которые имеют тесный контакт со стенками капилляров. Этим обеспечивается высокая метаболическая и пластическая функция одонтобластов.
Циркуляция крови в пульпе происходит внутри полости зуба, имеющей ригидные стенки. Пульсовые колебания объема крови в замкнутой полости должны были бы вызвать повышение тканевого давления и, как следствие – нарушение физиологических процессов в пульпе зуба. Однако вследствие передачи пульсовых колебаний объема артерий на вены и демпфирующих свойств капилляров этого не происходит. Сосудистая сеть пульпы зуба обладают эффективными противозастойными свойствами: суммарный просвет вен пульпы коронки больше, чем в области верхушечного отверстия, и поэтому линейная скорость кровотока в области верхушечного отверстия корня зуба выше, чем в пульпе коронки. Пульсовые колебания вен зуба аналогичны колебаниям вен головного мозга. Отводящие венозные сосуды пульпы зуба анастомозируют с венами периодонта. Богатая сеть анастомозов обеспечивает большие функциональные возможности кровообращения в пульпе зуба.
В артериальной части капилляров пульпы давление равно 25-30 мм.рт.ст., в венозной – 8-10 мм.рт.ст. В сосудах пульпы имеется вазоконстрикторная симпатическая иннервация. Описаны холино- и адренорецепторы в сосудах пульпы, подверженные действию гуморальных факторов.
Влияние кровоснабжения на функциональное состояние пульпы особенно наглядно проявляется в старческом возрасте. Склеротические изменения сосудов, развивающиеся параллельно склерозу основного вещества пульпы, приводят к уменьшению емкости и объема микроциркуляторного русла пульпы зуба.
В пульпе есть и лимфатические сосуды.
Кровоснабжение перидонта осуществляется обильными коллатералями, которые создаются сетью сосудистых анастомозов с микроциркуляторными системами альвеолярного отростка челюстей, пульпы зуба и окружающих мягких тканей. Между костной стенкой альвеолы и корнем зуба располагается богатая сосудистая сеть в виде сплетений, петель и капиллярных клубочков. Благодаря этому образуется амортизационная (демпферная) система периодонта. Эта система необходима для выравнивания жевательного давления с помощью капиллярных анастомозов.
Капиллярная сеть десны характеризуется тем, что сосуды подходят к поверхности слизистой оболочки. Капилляры покрыты лишь несколькими слоями эпителиальных клеток. В поверхности десневых сосочков, прилежащих к шейке зуба, находятся подковообразные капиллярные клубочки. Вместе с сосудистой системой десневого края они обеспечивают плотное прилегание края десны к шейке зуба. При гингивите в первую очередь поражаются сосудистые клубочки микроциркуляторного русла десны.
Кровеносные сосуды периодонта образуют несколько сплетений. Наружное сплетение состоит из более крупных, продольно расположенных кровеносных сосудов, среднее – из сосудов меньшего размера. Рядом с цементом корня расположено капиллярное сплетение.
Лимфатические сосуды периодонта располагаются в основном продольно, параллельно кровеносным сосудам. От полулунных расширений лимфатических сосудов отходят сплетения в виде клубочков, располагающихся более глубоко под сплетением капилляров. Лимфатические сосуды периодонта находятся в связи с лимфатическими сосудами пульпы, костей альвеолы и десны. Лимфа оттекает от сосудов пульпы и перидонта через лимфатические сосуды, проходящие в толще кости по ходу сосудисто-нервных пучков. Вместе с лимфатическими сосудами надкостницы и окружающих челюсть мягких тканей лимфатические сосуды наружной и внутренней поверхности тела челюсти образуют крупнопетлистую лимфатическую сеть. Отводящие сосуды этой системы вливаются в подбородочные, подчелюстные, околоушные и медиальные заглоточные лимфатические узлы.
В полости рта встречается диффузная лимфатическая ткань, а также множественные фолликулы, входящие в состав лимфоэпителиального глоточного кольца Пирогова, окружающего вход в пищеварительный и дыхательный тракты. Наиболее крупные его скопления носят название миндалин(небные, язычные, глоточные и др.). Лимфатические органы слизистых оболочек и миндалин в отличие от лимфатических узлов имеют только выносящие сосуды.
Капиллярное русло кожи челюстно-лицевой области построено по классическому типу и имеет множество артериоло-венулярных анастомозов.
Регуляция кровообращения. В сосудистой системе челюстно-лицевой области регуляция кровообращения осуществляется нервным, гуморальным и миогенным механизмами.Нервный механизмрегуляции заключается в том, что тоническая импульсация поступает к этим сосудам от сосудодвигательного центра по нервным волокнам, отходящим от верхнего шейного симпатического узла.
Вазомоторный тонус сосудов челюстно-лицевой области и пульпы зуба такой же, как и в других областях. Средняя частота тонической импульсации в сосудосуживающих волокнах этой области равна 1-2 имп/сек. Тоническая импульсация сосудосуживающих волокон имеет существенное значение для поддержания тонуса резистивных сосудов (в основном мелких артерий и артериол), так как нейрогенный тонус в этих сосудах преобладает.
Сосудосуживающие реакции резистивных сосудов челюстно-лицевой области и пульпы зуба обусловлены высвобождением в окончаниях симпатических нервных волокон медиатора норадреналина. Последний, взаимодействуя с альфа-адренорцепторами стенок мелких сосудов, создает сосудосуживающий эффект. Взаимодействие норадреналина с бета-адренорецепторами сосудов приводит к их расширению.
Наряду с адренорецепторами в сосудах головы и лица имеются М- и Н-холинорецепторы, возбуждающиеся при взаимодействии с ацетилхолином и вызывающие расширение сосудов. Такие холинэргические волокна могут принадлежать как к симпатическому, так к парасимпатическому отделам вегетативной нервной системы.
Центрами парасимпатической иннервации сосудов головы и лица являются ядра черепно-мозговых нервов, в частности барабанной струны, языкоглоточного и блуждающего нервов. Постганглионарные волокна этих нервов выделяют ацетилхолин.
Наряду с этим, в сосудах челюстно-лицевой области возможен механизм регуляции по типу аксон-рефлексов. Обнаружены вазомоторные эффекты при стимуляции нижнечелюстного нерва, который, являясь в основном афферентным нервом, может антидромно проводить возбуждение и вызывать расширение сосудов нижней челюсти. Такой вазомоторный эффект сходен по динамике с расширением сосудов кожи при раздражении периферического отрезка дорсального спинномозгового корешка.
Просвет сосудов челюстно-лицевой области и органов полости рта может изменяться также под влиянием гуморальных факторов. В стоматологической практике широко используется местное обезболивание смесью новокаина с 1% адреналином, который оказывает местное сосудосуживающее влияние и предотвращает кровотечение.
Сосуды пародонта и пульпы обладают и собственным миогенным местным механизмом регуляции тонуса. Так, повышение тонуса сосудов мышечного типа (артериол и прекапиллярных сфинктеров) приводит к уменьшению числа функционирующих капилляров, что предотвращает повышение внутрисосудистого давления крови и усиленную фильтрацию жидкости в ткани. Это один из механизмов физиологической защиты ткани от развития отека, который играет особенно важную роль в обеспечении жизнедеятельности пульпы зуба.
Миогенный тонус резистивных сосудов существенно снижается при функциональных нагрузках на ткани, что приводит к увеличению регионарного кровообращения и развитию «рабочей гиперемии». При пародонтозе, когда нарушается кровоснабжение тканей пародонта, функциональные нагрузки, снижающие миогенный тонус микрососудов (например, жевание), могут быть использованы в лечебно-профилактических целях для улучшения трофики пародонта. Это положение особенно важно в связи с тем, что в происхождении пародонтоза главную роль играют функциональные изменения тонуса сосудов.
Повышение миогенного тонуса артериол и прекапиллярных сфинктеров приводит к резкому сужению и даже частичному закрытию микроциркуляторного русла и значительно уменьшает площадь нутритивных сосудов, обеспечивающих транскапиллярный обмен. Это предотвращает усиленную фильтрацию жидкости в ткани и повышение внутрисосудистого давления крови, т.е. является физиологической защитой ткани от развития отека.
Миогенный механизм регуляции кровотока и транскапиллярного обмена играет особую роль в обеспечении жизнедеятельности пульпы зуба. Для пульпы зуба, находящейся в замкнутом пространстве, ограниченном стенками полости зуба, этот механизм является чрезвычайно важным для регуляции микроциркуляции в норме и патологии, например, при воспалении.
Методы исследования кровообращения в полости рта. Особенности кровоснабжения слизистой оболочки рта можно исследовать с помощью методакапилляроскопии. Капилляроскопия является методом прижизненного исследования микроциркуляторного русла сосудистой системы. Исследование проводится с помощью капилляроскопа – специального микроскопа с осветителем. Визуальное наблюдение капиллярного кровотока слизистой рта дает представление о степени и особенностях ее васкуляризации. При капилляроскопии выявляются различные формы капилляров: извитые, в виде запятой, петель, а также различный характер кровотока - непрерывный, толчкообразный пр.
Для оценки функционального состояния сосудов зубочелюстной системы в стоматологии широко используется метод реографии.Это бескровный метод исследования кровоснабжения органов и тканей, основанный на графической регистрации сопротивления тканей при прохождении через них электрического тока сверхвысокой частоты и небольшой силы. Метод реографии основан на том, что электропроводность ткани зависит от колебаний кровенаполнения сосудов: сопротивление крови значительно меньше, чем сопротивление тканей, поэтому увеличение кровенаполнения ткани существенно снижает ее электропроводность. В свою очередь кровенаполнение тканей меняется в различные фазы сердечного цикла (при систоле оно увеличивается, при диастоле - уменьшается) и зависит от скорости кровотока. Кроме того, на электропроводность тканей влияют не только объем крови, но и ее химический состав, вязкость, количество форменных элементов.
Метод оценки гемодинамики пульпы зуба называется реодентографией, тканей пародонта –реопародонтографией.
Слизистая оболочка рта является мощной рефлексогенной зоной, афферентная импульсация от которой может изменять деятельность сердца и тонус кровеносных сосудов. Так, при раздражении вкусовых рецепторов сладкими веществами отмечается расширение сосудов конечностей, горькие вещества вызывают их сужение. Болевые раздражения вызывают заметные изменения в системе кровообращения. Эти отклонения зависят от интенсивности раздражения и реактивности организма. Характер изменений сердечной деятельности зависит от исходной частоты сердцебиения: она может учащаться или замедляться после болевого раздражения. Тахикардия чаще наблюдается у лиц с преобладанием тонуса симпатического отдела вегетативной нервной системы, замедление – у ваготоников.
- Вопрос:
- Вопрос)
- Вопрос)
- 5 Вопрос)
- 6 Вопрос
- 7 Вопрос
- 8 Вопрос
- 9Вопрос
- Физиология цнс
- 10 Вопрос
- 11 Вопрос.
- 2.4. Общие сведения об иннервации челюстно-лицевой области
- 12 Вопрос
- 13 Вопрос.
- 14 Вопрос
- 15 Вопрос
- 16 Вопрос.
- 2. Функции гипоталамуса:
- 17 Вопрос
- 2. Методы исследований функций коры больших полушарий.
- 18 Вопрос
- 19 Вопрос
- Физиология сенсорных систем.
- 20 Вопрос
- 21 Вопрос
- 22 Вопрос
- 23 Вопрос
- 24 Вопрос
- 25 Вопрос
- 26 Вопрос
- 27 Вопрос
- 28 Вопрос
- 30 Вопрос
- 31 Вопрос
- 32 Вопрос
- 33 Вопрос
- 34 Вопрос
- 35 Вопрос
- 36 Вопрос
- 37 Вопрос
- 38 Вопрос
- 39 Вопрос
- 40 Вопрос
- 41 Вопрос
- 42 Вопрос
- 43 Вопрос
- 44 Вопрос
- Рефлекторная регуляция дыхания
- Гуморальная регуляция дыхания
- 45 Вопрос
- 46 Вопрос
- 47 Вопрос
- 48 Вопрос
- Радиоизотопные исследования
- Стресс-эхо
- Сердечный ритм
- Инфаркт миокарда
- 49 Вопрос
- 50 Вопрос
- 51 Вопрос.
- 52 Вопрос
- 2. Общая характеристика структуры микроциркуляторного русла.
- 3. Регуляция микроциркуляторного кровотока.
- 53 Вопрос
- 54 Вопрос
- 55 Вопрос
- 56 Вопрос
- 57 Вопрос
- 58 Вопрос
- 3 Иммунология и неспецифическая резистентость полости рта.
- 59 Вопрос
- 60 Вопрос
- 61 Вопрос
- 62 Вопрос
- 63 Вопрос
- 64 Вопрос
- 65 Вопрос
- 66 Вопрос
- 67 Вопрос
- 68 Вопрос
- 69 Вопрос
- 70 Вопрос.
- 71 Вопрос.
- 72 Вопрос
- 73 Вопрос
- 74 Вопрос
- 75 Вопрос