Четвертичная структура белка.
Под четвертичной структурой белка подразумевают способ укладки в пространстве отдельных полипептидных цепей, обладающих первичной, вторичной и третичной структурой и формирование единого в структурном и функциональном отношении макромолекулярного образования. Каждая отдельная полипептидная (протомер или субъединица) не обладают биологической активностью, а образовавшаяся молекула - олигомер обладает биологической активностью. Четвертичная структура белка уникальна, как и другие уровни организации. Четвертичная структура поддерживается нековалентными взаимодействиями между контактными площадками протомеров.
Четвертичная структура белков - еще один пример удивительной мудрости природы. Докажем это на примере функционирования двух белков: миоглобина, обладающего только третичной структурой и гемоглобина, обладающего четвертичной структурой. Гемоглобины представляют собой тетрамерные белки, молекулы которых образованы различными типами полипептидных цепей (, , , , S). В состав молекулы входит по две цепи двух разных видов. Длина - и -цепей примерно одинакова (- 141 а.к., - 146 а.к.). Наиболее распространенные гемоглобины имеют следующую тетрамерную структуру: HbA (нормальный гемоглобин взрослого человека) - 22,; HbF (фетальный гемоглобин) -22; HbS (гемоглобин при серповидноклеточной анемии) - 2S2; HbA2 (минорный гемоглобин человека) - 22.
Четвертичная структура наделяет гемоглобин дополнительными важными особенностями, которые способствуют выполнению гемоглобином уникальной биологической функцией и обеспечивают возможность строгой регуляции его свойств. Гемоглобин обладает аллостерическими свойствами (от греч. - аллос - другой, стерос - пространство). На его примере можно лучше понять свойства других аллостерических белков, поэтому рассмотрим работу гемоглобина подробнее.
Миоглобин способен запасать кислород, а гемоглобин обеспечивает его транспорт. Вторичная и третичная структуры миоглобина и протомеров гемоглобина очень сходны. Простетической группой этих белков является гем. Гем расположен в гидрофобном кармане пептидной цепи каждого протомера, т.е. окружен неполярными остатками, за исключением 2-х остатков гистидина, расположенных по обе стороны плоскости гема. С одним из них (проксимальным гистидином) Fe2+ связано координационно по 5 координационному положению. Второй (дистальный) гистидин расположен почти напротив проксимального, но несколько дальше, поэтому 6-ое координационное положение Fe2+ остается свободным. В неоксигенированном миоглобине или протомере гемоглобина атом железа выступает из плоскости кольца в направлении проксимального гистидина на 0,03 нм. В оксигенированном миоглобине (протомере гемоглобина) кислород занимает 6-ое координационное положение атома железа, при этом Fe2+ не меняет степени окисления. Такого эффекта позволяет достичь гидрофобное белковое окружение гема, которое не позволяет кислороду слишком сблизиться с железом, чтобы его окислить. Железо, координируя О2, выступает из плоскости кольца лишь на 0,01 нм. Т.о., оксигенирование миоглобина сопровождается смещением атома железа и, следовательно, проксимального гистидина и ковалентно связанных с ним аминокислотных остатков в направлении плоскости кольца. В результате белковая глобула меняет конформацию. Эти изменения приводят в гемоглобине сопровождаются разрывом солевых связей между протомерами, что облегчает связывание следующих молекул О2. Тем самым проявляется эффект кооперативного связывания.
- Аминокислоты Аминокислотный состав белков
- Строение и классификация аминокислот
- Стереоизомерия.
- Н езаменимые аминокислоты
- Пищевая ценность белков
- Биологические функции белков
- Структурная организация белковых молекул
- Классификация белков по растворимости
- Физико-химические свойства белков
- Первичная структура белков
- Конформация пептидных цепей в белках
- Третичная структура белков
- Силы, стабилизирующие третичную структуру белка.
- Четвертичная структура белка.
- Ферменты
- Особенности ферментов как биокатализаторов
- Классификация ферментов по типу катализируемой реакции и номенклатура ферментов
- Активный центр ферментов
- Причины высокой каталитической активности.
- Субстратная специфичность
- Зависимость скорости ферментативной реакции от температуры
- Зависимость скорости ферментативной реакции от рН
- Влияние активаторов и ингибиторов на активность ферментов
- Обратимое конкурентное ингибирование аналогами субстрата
- Обратимое неконкурентное ингибирование
- Необратимое ингибирование
- Единицы ферментативной активности ферментов
- Регуляция ферментативной активности
- Регуляция количества фермента путем регуляции скорости его синтеза и распада
- Превращение ферментов в активные формы
- Регуляция активности ферментов путем их ковалентной модификации
- Аллостерическая регуляция
- Ингибирование по принципу обратной связи
- Углеводы Общая характеристика и классификация.
- Моносахариды
- Цикло-оксо-таутомерия
- Химические свойства
- Дисахариды
- Полисахариды
- Классификация и основные структурные компоненты омыляемых липидов.
- Высшие жирные кислоты – это карбоновые кислоты, насыщенные или ненасыщенные, выделенные из жиров путем гидролиза. Для их строения характерны следующие основные особенности:
- Нейтральные липиды
- Триацилглицериды
- Неомыляемые липиды
- Витамины
- Водорастворимые витамины Тиамин (витамин в1)
- Рибофлавин (витамин в2)
- Ниацин (никотинамид, никотиновая кислота, витамин рр)
- Пантотеновая кислота
- Пиридоксин (пиридоксаль, пиридоксамин, витамин в6)
- Биотин (витамин н)
- Фолиевая кислота
- Витамин в12
- Аскорбиновая кислота (витамин с)
- Жирорастворимые витамины Витамин а
- Биохимические функции витамина а Регуляция экспрессии генов
- Витамин а и акт зрения
- Гипервитаминоз и гиповитаминоз
- Витамин д (кальциферол)
- Витамин е (токоферолы)
- Витамин к (нафтохиноны)
- Биоэнергетика. Основные понятия и определения Особенности живых организмов как объектов для термодинамических исследований
- Сопряжение экзергонических процессов с эндергоническими
- Макроэргические соединения
- Фазы освобождения энергии из питательных веществ
- Роль высокоэнергетических фосфатов в улавливании энергии. Клеточное дыхание
- Биосинтез вжк в тканях
- Гниение аминокислот, обезвреживание продуктов гниения
- Метаболизм аминокислот
- Пути обезвреживания аммиака
- Глюконеогенез