logo

Нарушения функций нейрона

Нарушение проведения возбуждения и аксонального транспорта. Распространение возбуждения по аксону обеспечивается последовательным сочетанием деполяризации мембраны и входа натрия в аксон. При недостаточном входе натрия нарушается генерация потенциала действия и проведение возбуждения прекращается. Необходимая для генерации потенциала действия разность концентраций натрия и калия по обе стороны поверхностной мембраны осуществляется натрий-калиевым насосом. Дефицит энергии ведет к нарушению деятельности насоса, что обусловливает невозможность генерации ПД (при ишемии, охлаждении и др.). Нарушение проведения обычно возникает при повреждении нерва и его демиелинизации. Однако участки хронически травмируемого нерва и демиелинизации могут генерировать возбуждение, они становятся эктопическими очагами возбуждения.

В аксоне осуществляется ток аксоплазмы, обеспечивающий транспорт различных веществ. С быстрым антероградным (из тела клетки в окончание) аксотоком транспортируются вещества и структуры, необходимые для синаптической деятельности (быстро расходуются); с медленным аксотоком транспортируются вещества, обеспечивающие трофику терминали и постсинаптической структуры, регенерацию аксона. С ретроградным током (от терминали) в тело нейрона транспортируются трофические вещества, образующиеся в постсинаптической клетке. Аксональный транспорт энергозависим и прекращается при дефиците энергии.

Аксональный транспорт страдает также при недостатке витаминов В6 и В1, при действии промышленных ядов, солей тяжелых металлов, алкоголя, при сахарном диабете и сдавлении нерва.

Патология дендритов. Дендриты возникают лишь у высших животных. Они обеспечивают поступление информации в нейрон и играют важнейшую роль в осуществлении его интегративной функции. Специальные выросты (шипики) создают значительную площадь синаптических контактов. Дендриты и шипики являются самыми ранимыми структурами нейрона, они повреждаются и исчезают при различных патогенных воздействиях, при старении шипики редуцируются. При некоторых дегенеративных и атрофических заболеваниях (старческое слабоумие, болезнь Альцгеймера) шипики и ветви дендритов не выявляются. Структурные изменения дендритов, усиленный вход через них Са2+ играют важную роль в возникновении эпилептической активности нейрона.

Патология нейрональных мембран. Механизмы повреждений здесь стандартны. Кратко можно отметить следующее.

К числу типовых патологических процессов, охватывающих нейрональные мембраны, относится усиленное свободнорадикальное перекисное окисление липидов (СПОЛ) мембран. В норме СПОЛ имеет защитное значение.

Однако в условиях патологии этот процесс может стать чрезмерно усиленным. Образующиеся в значительном количестве перекиси и продукты свободнорадикального окисления токсически действуют на клеточные структуры и на сами мембраны. Последние становятся патологически проницаемыми, возникают дефекты в их липидном слое.

Эти процессы усиливаются возросшей активацией фосфолипаз, вследствие чего образуется значительное количество высших жирных кислот из фосфолипидов нейрональных мембран. Накопление ВЖК приводит к дальнейшему повреждению мембран нейрона, в том числе мембран митохондрий, что обусловливает нарушение их деятельности и возникновение энергетического дефицита.

Вследствие патологической проницаемости мембран происходит выход из нейронов различных веществ, в том числе антигенов, что обусловливает развитие аутоиммунных процессов, усугубляющих повреждение нейронов. Нарушение состояния мембран приводит к возрастанию входа натрия и кальция в нейрон и выхода К+ из нейрона, что в сочетании с недостаточностью натрий-калиевого и кальциевого насосов способствует гиперактивации нейронов. Чрезмерное содержание Са2+ в нейроне приводит к его дегенерации.

Конформационные изменения в мембране, возникающие в связи с усиленным СПОЛ, могут вызвать нарушения реактивности расположенных в мембране рецепторов и их способности связывать медиаторы, трофогены, а также фармакологические препараты.

Усиленное СПОЛ может быть как первичным, вызванным прямым действием прооксидантов (перекиси, яды), так и вторичным, возникающим в ходе развития какого-либо патологического процесса.

Потребность нейронов в энергообеспечении очень высокая, и понятно, что гипоэргоз ведет к дегенерации нейрона, которая может завершиться его гибелью.

Главными условиями развития энергетического дефицита являются недостаток кислорода и значительное повреждение митохондрий, в которых синтезируется АТФ. Причиной дефицита может быть также недостаток субстрата окисления — глюкозы. Нейроны мозга не имеют запасов глюкозы и потребляют ее непосредственно из крови, поэтому они особенно чувствительны к гипогликемии.

Ишемия и функции нейрона. Из вышесказанного понятно, что ЦНС требует интенсивного кислородного обеспечения. Снижение потребления кислорода всего лишь на 20 % может вызвать потерю сознания у человека, через 5–8 мин аноксии возникают существенные изменения в корковых нейронах, которые наиболее чувствительны к недостатку кислорода.

На ранних этапах острой ишемии возникает гиперактивация нейронов. Она связана с их растормаживанием из-за ослабления чувствительных к гипоксии тормозных механизмов и с прямой деполяризацией нейронов вследствие входа натрия и Са2+. Последний механизм связан с раскрытием Са-натриевых каналов, недостаточностью натрий, калиевого насоса, действием возбуждающих аминокислот (глутамата). Содержание глутамата в синаптической щели резко возрастает в связи с его усиленным выделением деполяризующимися нервными окончаниями и нарушением энергозависимого обратного захвата глутамата нервными окончаниями и глией. При действии глутамата происходит активация НМДА-рецепторов (N-метил-D-аспартатрецепторов), следствием чего является раскрытие НМДА-зависимых кальций-натриевых каналов и происходит усиленный вход натрия и кальция.

Входящий натрий усиливает деполяризацию мембраны, что приводит к дальнейшему раскрытию потенциал-зависимых кальциевых каналов и дополнительному входу Са2+ , а также в том, что он влечет за собой вход воды и набухание нейрона и митохондрий.

Существенное значение в развитии внутриклеточной патологии имеет нарушение гомеостаза Са2+ в цитоплазме нейрона. Нарушение кальциевого гомеостаза возникает вследствие усиленного входа в нейрон внеклеточного Са2+ и выхода Са2+ из внутриклеточных депо при нарушенных энергозависимых процессах «откачки» кальция клетки и его закачки во внутриклеточные депо.

Поскольку Са 2+ принимает участие практически во всех основных процессах жизнедеятельности нейрона, играя роль универсального вторичного месседжера, его чрезмерное содержание вызывает нарушение регуляции этих процессов, оно ведет к растормаживанию и гиперактивации нейронов, вызывает усиленный фосфолипазный гидролиз и протеолиз и в связи с этим — повреждение внутриклеточных мембран. Усиливается синтез эйкозаноидов — жирных кислот, образующихся из арахидоновой кислоты. Эйкозаноиды вместе с другими производными арахидоновой кислоты (лейкотриенами, тромбоксаном, простагландинами) изменяют микроциркуляцию так, что возникает воспаление.

Процессы эндогенного повреждения нейронов могут развиваться и приводить к гибели нейронов и после прекращения ишемии, в условиях реперфузии, а также после прекращения действия одного только глутамата в высокой концентрации. В механизмах «отсроченной» гибели нейрона важную роль играет как раз повышение содержания Са 2+ в нейроне.

При реперфузии повреждение тканей НС вызывают следующие патогенетические факторы: 1) активация эндотелиальных клеток, полиморфо-и и мононуклеаров; 2) образование высокореактогенных метаболитов кислорода эндотелиальными клетками, что служит причиной все большей активации лейкоцитов (т.е. их мобилизации в качестве эффекторов повреждений тканей); 3) высвобождение активированными нейтрофилами медиаторов, которые повышают проницаемость эндотелиального барьера. Кроме того, ишемические/реперфузионные повреждения снижают образованием NO эндотелиальными клетками. Оксид азота обладает свойством инактивировать свободные кислородные радикалы. Следовательно, при депрессии базального синтеза NO количество радикалов растет.

Гипоксия имеет место при различных формах патологии ЦНС и является типовым неспецифическим патологическим процессом. Однако дозированная гипоксия может вызывать положительный эффект, стимулируя метаболические, пластические и трофические процессы в ЦНС.