Биохимические свойства и функции кобаламина (b12)
К настоящему времени известно ~ 15 различных В12-регулируемых реакций, но только две из них протекают в клетках млекопитающих — синтез метионина из гомоцистеина (явно не удовлетворяющий потребностям организма) и изомеризация D-ме-тилмалонил-КоА в сукцинил-КоА. Рассмотрим эти реакции.
1. В первой реакции участвует метил-В12, являющийся кофермен-том метионинсинтазы (гомоцистешшетилтрансферазы). Фермент переносит метильную группу с 5-метил-ТГФК на гомоцистеин с образованием метионина:
При уменьшении содержания в диете витамина В12 синтез метио-нина метионинсинтазой снижается, но поскольку при полноценном питании метионин поступает с пищей, метаболизм белков нарушается не сразу. Вместе с тем падение активности метионинсинтазы приводит к накоплению 5-метил-ТГФК (см. схему), который образуется при восстановлении 5,10-метилен-ТГФК, т. е. исчерпывается пул других коферментов ТГФК. Таким образом, даже при условии вполне достаточного общего уровня фолатов создается их функциональный дефицит — уменьшается содержание формил- и метиленпроизводных ТГФК. Как раз эти производные, а точнее, приносимые ими одно-углеродные радикалы, необходимы для синтеза предшественников нуклеиновых кислот. Этот феномен получил название секвестрация пула ТГФК.
Описанная реакция служит примером тесной взаимосвязи между двумя витаминами — фолиевой кислотой и кобаламином. Не удивительна поэтому и схожесть симптомов заболевания при дефиците какого-либо из них.
В середине 90-х годов появились сообщения о существовании тесной связи между дефицитом фолата и увеличением степени риска инфаркта миокарда; при этом индивидуальный риск сердечного приступа связан с ненормально высоким уровнем сывороточного гомоцистеина. Объясняется это тем, что у фолатдефицитных индивидуумов повышенный уровень кофакторов ТГФК лимитирует метаболический поток через метионинсинтазную реакцию с последующей аккумуляцией гомоцистеина — субстрата этого фермента. Предполагается, что гомоцистеин является метаболитом, ответственным за повреждение сердца, хотя механизм его токсичного действия не известен.
2. Вторая реакция требует участия другой коферментной формы витамина — д-адеyозин-В1Г Кофермент входит в состав метималонил-КоА-мутазы. Особенностями катализа этого фермента является образование свободнорадикальных промежуточных продуктов реакции и изменение валентности кобальта. Субстратом для его действия является метилмалонил-КоА, образующийся при карбоксилировании пропионил-КоА.
Эта реакция является весьма важной в метаболизме пропионовой кислоты (точнее, пропиониол-SKoA), которая образуется при окислении жирных кислот с нечетным числом атомов углерода, боковой цепи холестерина, окислительном распаде аминокислот: изолейцина, метионина и серина.
- 60 Химическое строение и свойства витамина b1
- Нехватка витамина b1, причины, симптомы
- Нарушение обмена тиамина в организме
- Суточная потребность в витамине b1, пищевые источники витамина b1
- Продукты, богатые витамином b1
- Химическое строение и свойства витамина b2 (рибофлавина)
- Биохимические свойства витамина b2
- Гиповитаминоз и гипервитаминоз витамина b2 Гиповитаминоз
- Гипервитаминоз
- Метаболизм пантотеновой кислоты (витамина b3)
- Биохимические функции пантотеновой кислоты
- Гиповитаминоз и гипервитаминоз пантотеновой кислоты
- Суточная потребность и пищевые источники пантотеновой кислоты
- Продукты, богатые пантотеновой кислотой (витамином b3)
- Химическое строение и свойства витамина pp
- Метаболизм витамина pp
- Биохимические функции никотиновой кислоты
- Гиповитаминоз витамина b5
- Гипервитаминоз витамина b5
- Оценка обеспеченности организма витамином pp
- Суточная потребность и пищевые источники витамина b5
- Продукты,богатые витамином pp (b5)
- Гиповитаминоз пиридоксина (витамина b6)
- Гипервитаминоз пиридоксина (витамина b6)
- Врожденные нарушения обмена витамина b6
- Гомоцистинурия
- Цистатионинурия
- Наследственная ксантуренурия (синдром Кнаппа)
- Пиридоксинзависимый судорожный синдром
- Пиридоксинзависимая анемия
- Суточная потребность в витамине b6, пищевые источники пиридоксина
- Метаболизм фолиевой кислоты
- Биохимические функции и свойства витамина b9
- Гиповитаминоз фолацина
- Врождённые нарушения обмена витамина b9
- Обеспеченность организма фолиевой кислотой
- Суточная потребность в витамине b9, пищевые источники фолиевой кислоты
- Продукты,богатые витамином b9
- Химическое строение и свойства витамина b12 (кобаламина)
- Метаболизм кобаламина в организме
- Биохимические свойства и функции кобаламина (b12)
- Недостаток кобаламина (витамина b12) в организме
- Избыток витамина b12
- Как проводят оценку?
- Суточная потребность витамина b12, пищевые источники кобаламина
- Продукты,богатые витамином b12
- Химическое строение и свойства витамина h
- Метаболизм биотина (витамина h)
- Биохимические функции биотина
- Врожденные нарушения обмена биотина, гипервитаминоз и гиповитаминоз витамина h Гиповитаминоз
- Врожденные нарушения обмена биотина
- Суточная потребностьи пищевые источники биотина
- Продукты,богатые витамином h
- Витамин с (аскорбиновая кислота), химическое строение и свойства
- Метаболизм аскорбиновой кислоты в организме
- Биохимические функции аскорбиновой кислоты
- Гиповитаминоз и гипервитаминоз аскорбиновой кислоты Гиповитаминоз
- Суточная потребность и источники аскорбиновой кислоты
- Продукты, богатые витамином c
- Химическое строение и свойства витамина а.
- Метаболизм витамина а в организме человека
- Биохимические функции ретинола
- Участие витамина а в процессе зрения
- Участие витамина а в антиоксидантной защите организма
- Гиповитаминоз и гипервитаминоз ретинола Гиповитаминоз витамина а
- Гипервитаминоз витамина а
- Оценка обеспеченности организма ретинолом
- Врожденные нарушения обмена ретинола
- Суточная потребность витамина а, пищевые источники витамина а
- Продукты, богатые витамином а
- Химическое строение и свойства каротинов (провитаминов а)
- Биохимические функции провитаминов а
- Суточная потребность и пищевые источники каротинов
- Продукты, богатые каротинами
- Химическое строение и свойства витамина е
- Метаболизм токоферола
- Биохимические функции токоферола
- Гиповитаминоз токоферола
- Гипервитаминоз токоферола
- Врождённые нарушения обмена токоферола
- Оценка обеспеченности организма витамином е
- Суточная потребность и пищевые источники токоферола
- Продукты, богатые витамином е
- Витамин д (кальциферол), химическое строение и свойства
- Метаболизм витамина д
- Биохимические функции кальциферола
- Гиповитаминоз витамина д
- Врожденные нарушения обмена кальциферола Семейный гипофосфатемический витамин-д-резистентный рахит.
- Врожденный псевдодефинитный витамин-д-зависимый рахит.
- Гипервитаминоз витамина д
- Суточная потребность в витамине д и его источники
- Метаболизм и биохимические функции витамина k Метаболизм витамина к
- Биохимические функции витамина к
- Недостаточность витамина к
- Врожденные нарушения обмена витамина к
- Оценка обеспеченности организма витамином к, суточная потребность
- Продукты богатые витамином к
- Метаболизм витамина f метаболизм витамина f
- Биохимические функции витамина f
- Недостаточность витамина f
- Суточная потребность и источники витамина f
- Продукты богатые витамином f
- Химическое строение и свойства инозита (витамина b8)
- Метаболизм витамина b8 (инозита)
- Суточная потребность и источники витамина b8
- Недостаточность карнитина
- Потребность и пищевые источники липоевой кислоты
- Потребность и источники парааминобензойной кислоты.
- Суточная потребность и пищевые источники рутина
- Продукты, богатые витамином p