logo
Adelman_D

I. Патогенез

А. Антигены. Не все антигены стимулируют выработку IgE. Например, таким свойством не обладают полисахариды. Большинство природных антигенов, вызывающих аллергические реакции немедленного типа, — это полярные соединения с молекулярной массой 10 000—20 000 и большим количеством поперечных сшивок. К образованию IgE приводит попадание в организм даже нескольких микрограммов такого вещества. По молекулярной массе и иммуногенности антигены делятся на две группы: полные антигены и гаптены.

1. Полные антигены, например антигены пыльцы, эпидермиса и сыворотки животных, экстрактов гормонов, сами по себе вызывают иммунный ответ и синтез IgE. Основу полного антигена составляет полипептидная цепь. Его участки, распознаваемые B-лимфоцитами, называются антигенными детерминантами. В процессе переработки полипептидная цепь расщепляется на низкомолекулярные фрагменты, которые соединяются с антигенами HLA класса II и в таком виде переносятся на поверхность макрофага. При распознавании фрагментов переработанного антигена в комплексе с антигенами HLA класса II и под действием цитокинов, вырабатываемых макрофагами, активируются T-лимфоциты. Антигенные детерминанты, как уже указывалось, распознаются B-лимфоцитами, которые начинают дифференцироваться и вырабатывать IgE под действием активированных T-лимфоцитов.

2. Гаптены — это низкомолекулярные вещества, которые становятся иммуногенными только после образования комплекса с тканевыми или сывороточными белками-носителями. Реакции, вызванные гаптенами, характерны для лекарственной аллергии. Различия между полными антигенами и гаптенами имеют важное значение для диагностики аллергических заболеваний. Так, полные антигены можно определить и использовать в качестве диагностических препаратов для кожных аллергических проб. Определить гаптен и изготовить на его основе диагностический препарат практически невозможно, исключение составляют пенициллины. Это обусловлено тем, что низкомолекулярные вещества при попадании в организм метаболизируются и комплексы с эндогенным белком-носителем образуют в основном метаболиты.

Б. Антитела. Для синтеза IgE необходимо взаимодействие между макрофагами, T- и B-лимфоцитами. Антигены поступают через слизистые дыхательных путей и ЖКТ, а также через кожу и взаимодействуют с макрофагами, которые перерабатывают и представляют его T-лимфоцитам. Под действием цитокинов, высвобождаемых T-лимфоцитами, B-лимфоциты активируются и превращаются в плазматические клетки, синтезирующие IgE (см. рис. 2.1).

1. Плазматические клетки, вырабатывающие IgE, локализуются главным образом в собственной пластинке слизистых и в лимфоидной ткани дыхательных путей и ЖКТ. В селезенке и лимфоузлах их мало. Общий уровень IgE в сыворотке определяется суммарной секреторной активностью плазматических клеток, расположенных в разных органах.

2. IgE прочно связываются с рецепторами к Fc-фрагменту на поверхности тучных клеток и сохраняются здесь до 6 нед. С поверхностью тучных клеток также связываются IgG, однако они остаются связанными с рецепторами не более 12—24 ч. Связывание IgE с тучными клетками приводит к следующему.

а. Поскольку тучные клетки с фиксированными на их поверхности IgE расположены во всех тканях, любой контакт с антигеном может привести к общей активации тучных клеток и анафилактической реакции.

б. Связывание IgE с тучными клетками способствует увеличению скорости синтеза этого иммуноглобулина. За 2—3 сут он обновляется на 70—90%.

в. Поскольку IgE не проникает через плаценту, пассивный перенос плоду сенсибилизации невозможен. Другое важное свойство IgE состоит в том, что в комплексе с антигеном он активирует комплемент по альтернативному пути (см. гл. 1, п. IV.Г.2) с образованием факторов хемотаксиса, например анафилатоксинов C3a, C4a и C5a.

В. Тучные клетки

1. Тучные клетки присутствуют во всех органах и тканях, особенно много их в рыхлой соединительной ткани, окружающей сосуды. IgE связываются с рецепторами тучных клеток к Fc-фрагменту эпсилон-цепей. На поверхности тучной клетки одновременно присутствуют IgE, направленные против разных антигенов. На одной тучной клетке может находиться от 5000 до 500 000 молекул IgE. Тучные клетки больных аллергией несут больше молекул IgE, чем тучные клетки здоровых. Количество молекул IgE, связанных с тучными клетками, зависит от уровня IgE в крови. Однако способность тучных клеток к активации не зависит от количества связанных с их поверхностью молекул IgE.

2. Способность тучных клеток высвобождать гистамин под действием антигенов у разных людей выражена неодинаково, причины этого различия неизвестны. Высвобождение гистамина и других медиаторов воспаления тучными клетками можно предотвратить с помощью десенсибилизации и медикаментозного лечения (см. гл. 4, пп. VI—XXIII).

3. При аллергических реакциях немедленного типа из активированных тучных клеток высвобождаются медиаторы воспаления. Одни из этих медиаторов содержатся в гранулах, другие синтезируются при активации клеток. В аллергических реакциях немедленного типа участвуют и цитокины (см. табл. 2.1 и рис. 1.6). Медиаторы тучных клеток действуют на сосуды и гладкие мышцы, проявляют хемотаксическую и ферментативную активность. Помимо медиаторов воспаления в тучных клетках образуются радикалы кислорода, которые также играют роль в патогенезе аллергических реакций.

4. Механизмы высвобождения медиаторов. Активаторы тучных клеток подразделяются на IgE-зависимые (антигены) и IgE-независимые. К IgE-независимым активаторам тучных клеток относятся миорелаксанты, опиоиды, рентгеноконтрастные средства, анафилатоксины (C3a, C4a, C5a), нейропептиды (например, субстанция P), АТФ, интерлейкины-1, -3. Тучные клетки могут активироваться и под действием физических факторов: холода (холодовая крапивница), механического раздражения (уртикарный дермографизм), солнечного света (солнечная крапивница), тепла и физической нагрузки (холинергическая крапивница). При IgE-зависимой активации антиген должен соединиться по крайней мере с двумя молекулами IgE на поверхности тучной клетки (см. рис. 2.1), поэтому антигены, несущие один участок связывания с антителом, не активируют тучные клетки. Образование комплекса между антигеном и несколькими молекулами IgE на поверхности тучной клетки активирует ферменты, связанные с мембраной, в том числе фосфолипазу C, метилтрансферазы и аденилатциклазу (см. рис. 2.2). Фосфолипаза C катализирует гидролиз фосфатидилинозитол-4,5-дифосфата с образованием инозитол-1,4,5-трифосфата и 1,2-диацилглицерина. Инозитол-1,4,5-трифосфат вызывает накопление кальция внутри клеток, а 1,2-диацилглицерин в присутствии ионов кальция активирует протеинкиназу C. Кроме того, ионы кальция активируют фосфолипазу A2, под действием которой из фосфатидилхолина образуются арахидоновая кислота и лизофосфатидилхолин. При повышении концентрации 1,2-диацилглицерина активируется липопротеидлипаза, которая расщепляет 1,2-диацилглицерин с образованием моноацилглицерина и лизофосфатидиловой кислоты. Моноацилглицерин, 1,2-диацилглицерин, лизофосфатидилхолин и лизофосфатидиловая кислота способствуют слиянию гранул тучной клетки с цитоплазматической мембраной и последующей дегрануляции. К веществам, угнетающим дегрануляцию тучных клеток, относятся цАМФ, ЭДТА, колхицин и кромолин. Альфа-адреностимуляторы и цГМФ, напротив, усиливают дегрануляцию. Кортикостероиды угнетают дегрануляцию крысиных и мышиных тучных клеток и базофилов, а на тучные клетки легких человека не влияют. Механизмы торможения дегрануляции под действием кортикостероидов и кромолина окончательно не изучены. Показано, что действие кромолина не опосредовано цАМФ и цГМФ, а действие кортикостероидов, возможно, обусловлено повышением чувствительности тучных клеток к бета-адреностимуляторам.

Г. Роль медиаторов воспаления в развитии аллергических реакций немедленного типа. Изучение механизмов действия медиаторов воспаления способствовало более глубокому пониманию патогенеза аллергических и воспалительных заболеваний и разработке новых способов их лечения. Как уже отмечалось, медиаторы, высвобождаемые тучными клетками, делятся на две группы: медиаторы гранул и медиаторы, синтезируемые при активации тучных клеток (см. табл. 2.1).