logo search
ОБЩАЯ ГИГИЕНА ЛЕКЦИИ

Действие ионизирующих излучений на макромолекулы (химическая стадия)

Действие ИИ на белки.

До 20% поглощённой энергии будет локализоваться в белках.

Под действием ИИ из молекулы белка выбивается электрон.Образуется дефектный участок, лишённый электрона - "дырка".Эта "дырка" мигрирует по полипептидной цепи за счёт переброски соседних электронов до тех пор, пока не достигнет участка с повышенными электрондонорными свойствами. В этом месте возникают свободные радикалы у пептидных группировок. Такие события происходят в результате прямого действия ИИ. При косвенном действии образование свободных радикалов происходит при взаимодействии с продуктами радиолиза воды. Образование свободных радикалов влечёт за собой изменения структуры белка :

- разрыв водородных, пептидных, дисульфидных связей ;

- разрушение аминокислот в цепи ;

- образование сшивок и агрегатов ;

- нарушение вторичной и третичной структуры белка.

Такие нарушения в структуре белка приводят к нарушению всех его функций (ферментативной, гормональной, сократительной и др.). На­рушение ферментативной функции - образование "бешеных ферментов".

Действие ИИ на нуклеиновые кислоты

Около 7% поглощённой дозы приходится на ядерную ДНК.

Механизм повреждения сходен с повреждением белка : выбивание электрона и образование "дырки", миграция её по полинуклеотидной цепи ( при этом пробегается несколько сотен азотистых оснований ) до участ­ка с повышенными электрондонорными свойствами .Таким местом будет место локализации азотистого основания, чаще тимина или цитозина. Воз­никают свободные радикалы этих оснований. Это прямое действие. При косвенном действии к образованию свободных радикалов приводит взаимо­действие с продуктами радиолиза воды. Образование свободных радикалов приводит к нарушению структуры ДНК:

- однонитевые и двунитевые разрывы ;

- модификация азотистых оснований;

- образование сшивок - тиминовых димеров;

- нарушение ДНК-мембранного комплекса ;

- сшивки ДНК - ДНК ;

- сшивки ДНК с белком нуклеопротеидного комплекса.

При дозе 1 Гр в каждой клетке человека повреждается 5000 азо­тистых оснований ,возникает 1000 одиночных и 10-100 двойных разрывов.

Определённое число одиночных разрывов образуется даже при малыхдозах излучения, но они не приводят к поломкам молекулы ДНК, т.к. куски повреждённой молекулы прочно удерживаются на месте водо­родными связями c противоположной нитью ДНК. Репарация одиночных раз­рывов идёт быстро и эффективно - эксцизионная репарация:

- фермент эндонуклеаза узнаёт повреждённый участок и производит "разрез";

- фермент экзонуклеаза вырезает повреждённый участок (иногда и прилегающие);

- ДНК-полимераза застраивает дефект новыми нуклеотидами с исполь­зованием неповреждённой нити в качестве матрицы;

- лигазы соединяют новый сегмент с интактными участками.

Большинство одиночных разрывов репарируются даже в летально облу­чённых клетках. Поэтому одиночные разрывы не являются причиной, опре­деляющей гибель клетки. Однако нерепарированные одиночные разрывы мо­гут в последующем привести к образованию двойных разрывов.

Двойные разрывы могут возникнуть в результате единичного акта ио­низации либо при совпадении одиночных разрывов на комплементарных ни­тях.Двойные разрывы опасны для клетки ,т.к. они практически не репари­руются и служат непосредственной причиной возникновения хромосомных аберраций.Основными видами хромосомных аберраций являются:

- фрагментация хромосом;

- образование хромосомных мостов ,дицентриков ,кольцевыххромосом;

- появление внутри- и межхромосомных обменов.

Часть аберраций (например, мосты) механически препятствуют деле­нию клетки. Появление обменов, ацентрических фрагментов приводит к не­равномерному разделению хромосом и утрате генетического материала, а это вызывает гибель клеток из-за недостатка метаболитов, синтез кото­рых кодировался утраченной частью ДНК.

Действие ИИ на липиды

Под влиянием облучения происходит образование свободных радикалов ненасыщенных жирных кислот, которые при взаимодействии с кислородом образуют перекисные радикалы, а они, в свою очередь, реагируют с на­тивными жирными кислотами. Это процесс перекисного окисления липидов. Т.к. липиды - основа биомембран, то это повлечёт за собой изменение их свойств.А поскольку клетка представляет собой систему взаи­мосвязанных мембран и многие процессы клеточного метаболизма проходят именно на мембранах, то в клетке нарушаются биохимические процессы.Вы­ражено нарушение энергетического обмена, что связано с повреждением митохондрий.

Нарушение целости наружной мембраны клетки приводит к сдвигу ион­ного баланса клетки из-за выравнивания концентраций натрия и калия.

Действие на углеводы

Под действием ИИ происходит отрыв атома водорода от кольца, обра­зуются свободные радикалы, а затем перекиси.

Из продукта распада углеводов - глицеринового альдегида - синте­зируется метилглиоксаль - вещество, ингибирующее синтез ДНК, белка, подавляющее деление клеток.

Чувствительна к облучению гиалуроновая кислота, являющаяся составным элементом соединительной ткани.