logo
Gigiena_truda_Alexeev_1988

Распределение, превращение и выделение ядов из организма

Распределение ядов подчиняется определенным закономерностям. Промышленные органические яды в подавляющем большинстве являются неэлектролитами. Основные закономерности распределения неэлектролитов между кровью и различными тканями организма сводятся к тому, что сразу же после поступления в кровь неэлектролит разносится по всем тканям и органам и соответственно задерживается в них. В этой первой фазе распределения основное значение для накопления вещества играет кровоснабжение ткани или органа - чем оно больше, тем больше содержание вещества. Таким образом, в первый период можно говорить о динамическом распределении вещества, определяемом интенсивностью кровоснабжения.

Однако в дальнейшем картина меняется. С течением времени все большую роль в распределении начинают играть собственно сорбционные свойства тканей. Постепенно происходит перераспределение веществ с преимущественным их накоплением в тканях, сорбционная емкость которых оказывается для данных веществ наибольшей. Окончательное распределение можно назвать статическим.

Для липидорастворимых веществ наибольшей емкостью, например, обладает жировая ткань и органы, богатые липидами (костный мозг, семенники и некоторые другие). Для ряда металлов (серебро, марганец, хром, кобальт, ванадий, кадмий, цинк) характерно достаточно быстрое исчезновение их из крови с наибольшим накоплением в печени и почках. Остальные органы равномерно включаются в распределение элементов.

Растворимые и хорошо диссоциирующие соединения свинца, бериллия, бария, урана, склонные к образованию прочных связей с кальцием и фосфором, накапливаются преимущественно в костной ткани.

Превращение вредных веществ в организме. Чужеродные органические соединения в организме претерпевают широкий ряд метаболических превращений. Их можно обобщенно подразделить на превращения, которые катализируются ферментами эндоплазматического ретикулума печени и других тканей, и на превращения, катализируемые ферментами, локализованными в других местах (немикросомальные). Основываясь на химической природе этих реакций, их можно классифицировать следующим образом.

Окисление микросомальными ферментами: гидроксилирование ациклических, ароматических соединений, N-гидроксилирование аминов, S-окисление, дезаминирование и сульфирование.

Восстановление микросомальными ферментами: восстановление нитро- и азосоединений.

Немикросомальное окисление: дезаминирование, окисление спиртов и альдегидов, ароматизация алициклических соединений.

Немикросомальное восстановление: восстановление альдегидов и кетонов.

Гидролиз: гидролиз сложных эфиров и амидов с участием микросомальных и немикросомальных ферментов.

Прочие реакции: к ним относятся дегидроксилирование катехолов и гидроксамовых кислот, дегалогенирование, разрыв кольца, образование кольца, восстановление ненасыщенных соединений, восстановление дисульфидов и тиолы и др.

Продукты этих метаболических превращений затем могут подвергаться: а) выделению без дальнейших изменений; б) конъюгации с последующим выделением; в) метаболизму посредством нормальных процессов межуточного обмена.

Соединения, особенно с несколькими функциональными группами, могут метаболизироваться посредством более чем одной из этих реакций, давая ряд различных метаболитов.

Схема превращений вредных веществ в организме в самом общем виде представлена по схеме 1.

Схема 1

Превращение вредных веществ в организме

Вредные вещества

Окисление Восстановление Гидролиз

Связывание

Выделение

Ф-ты

Ф-ты

Эндоплазматический ретикулум клеток печени и других тканей представляет собой липопротеиновую канальцевую сеть, распространяющуюся от стенки клетки через всю цитоплазму. Имеет 2 типа ретикулума: шероховатый эндоплазматический ретикулум, поверхность которого усыпана рибосомами, являющимися местом синтеза белков, и гладкий эндоплазматический ретикулум, который не имеет рибосом. Наибольшая ферментативная активность связана с гладким эндоплазматическим ретикулумом. По-видимому, синтез ферментов происходит в шероховатом ретикулуме, но при насыщении ферментами он лишается своих рибосом и превращается в гладкий ретикулум.

Биологическое окисление, катализируемое системами микросомальных ферментов, включает широкий круг реакций, но все они могут быть сведены к одному общему механизму, а именно к гидроксилированию.

Реакции микросомального окисления протекают по следующим схемам.

1. Гидроксилирование ароматического кольца:

C6H5R ------- HOC6H4R

2. Гидроксилирование боковой цепи (ациклическое):

RCH3 ------ RCH2OH

3. N-дезалкилирование:

R-NH-CH3 ----- [R-HCH2OH] ----- RNH2 + HCOH

4. О-дезалкилирование:

R-О-СН3 ----- [R-O-CH2OH] ----- ROH + HCOH

5. Дезаминирование:

R-CH(NH2)CH3 ----- [RCOH(NH2)CH3] ----- R-CO-CH3 + NH3

6. Образование сульфоксида:

R-S-СН3 ----- [R-S-CH2OH] ----- R-SO-СН3

Для всех этих реакций требуется восстановленный кофермент НАДФН2 и кислород. Восстановленный никотинадениндинуклеотидфосфат превращает кислород в активную молекулярную форму: активированный кислород в присутствии различных гидроксилаз гидроксилирует чужеродное соединение.

Микросомальные реакции восстановления не так универсальны, как окислительные. Предполагаются следующие этапы восстановления, включающие, по-видимому, и неферментативную фазу: микросомальный ферментативный комплекс НАДФН2 – цитохром-С-редуктаза или НАД-Н2 (никотинамидадениннуклеотид) - цитохром -В-редуктаза восстанавливает ФАД (флавинадениннуклеотид) в ФАД-Н2. Последний неферментативно восстанавливает ядовитое соединение:

ФАДН2 + R-NO2 ----- ФАД + RNH2 + 2Н2О

Немикросомальные реакции окисления, восстановления и гидролиза катализируются многими ферментными системами. Например, в растворимой фракции гомогенатов печени, почек и легких содержится алкогольдегидрогеназа, которая быстро окисляет многие первичные спирты в соответствующие альдегиды. Необходимым коферментом этих реакций является НАД или НАДФ и участие цитохрома Р-450.

Алкогольдегидрогеназа

СН3СН2ОН + НАД ----- СН3-СOH + НАД-Н2

Известно несколько типов немикросомального восстановления: восстановление двойных связей, дисульфидов, сульфоксидов и др.

Гидролитическому расщеплению подвергаются сложные эфиры и амиды кислот. В этом процессе участвуют ферменты (эстеразы, амидазы), находящиеся в печени и в плазме крови:

Эстераза

RCOOR' + Н2О ----- RCOOH + R'OH

Амидаза

RCOHNH2 ----- RCOOH + NH3

После первичных реакций биотрансформации ядовитые соединения могут приобретать химические активные группы (ОН, СООН, NH2, SH и др.), которые вступают в реакцию конъюгации с эндогенными субстратами: глюкуроновой кислотой, сульфатом, уксусной кислотой, некоторыми аминокислотами. В результате образуются более полярные молекулы, легко выделяющиеся из организма с мочой. Таким образом в организме трансформируются фенолы, спирты, карбоновые кислоты, аминосоединения и другие.

Металлы и их соединения, попадая в организм, могут многократно менять свою форму. Большую часть пребывания в организме они существуют в виде комплексов с белками. Исключение составляют щелочные и частично щелочноземельные металлы. Первые содержатся в жидкой фазе в ионной форме, частично образуют непрочные, легко гидролизуемые комплексы. Металлы соединяются с активными группами биокомплексов: ОН, СООН, НРО3 и лимонной кислотой. Существует сродство отдельных металлов к белкам и аминокислотам. С аминокислотами через SH-группы соединяются Hg, Pb, Co, Cd; через СООН-группы - Сu, Ni, Zn, Mg, Ca. Металлы, преимущественно с переменной валентностью, подвергаются в организме восстановлению и окислению. Так, пятивалентный мышьяк восстанавливается в организме до более токсичного трехвалентного.

Выделение вредных веществ из организма. Токсичные вещества выделяются через легкие, почки, желудочно-кишечный тракт, кожу. При этом яды могут выделяться несколькими путями одновременно.

Скорость выведения вредных веществ обычно наибольшая в первые дни и недели после поступления их в организм, а в дальнейшем она замедляется. Для характеристики ее может быть использован биологический период полувыведения - время, необходимое для уменьшения в организме или отдельных органах концентрации вещества на 50%.

Выделение через легкие. Многие летучие неэлектролиты в основном выделяются из организма в неизмененном виде с выдыхаемым воздухом. Скорость выделения паров и газов зависит от растворимости их в воде. Чем она меньше, тем быстрее происходит выделение яда, находящегося в крови и органах. Более медленно выделяются вредные вещества, депонированные в жировой ткани.

Через легкие могут выделяться также летучие метаболиты, образующиеся при биотрансформации яда. Такими конечными метаболитами могут быть вода и углекислота.

Выделение через почки. Выделение ядов через почки осуществляется путем пассивной фильтрации и активным транспортом. В почечных канальцах неэлектролиты, хорошо растворимые в липидах, путем пассивной диффузии могут проникать в двух направлениях - из канальцев в кровь и из крови в канальцы. Направление пассивной канальцевой диффузии слабоионизированных органических электролитов зависит от реакции мочи. Если канальцевая моча более щелочная, чем плазма, в мочу легко проникают слабые органические кислоты; если реакция мочи более кислая, в нее диффундируют слабые органические основания. Образующиеся в процессе биотрансформации многих ядов конъюгаты с серной и глюкуроновой кислотами концентрируются в моче благодаря активному канальцевому транспорту, достигая при этом высокой степени накопления.

Почками быстро выделяются металлы, циркулирующие в виде ионов и в молекулярно-дисперсном состоянии. К ним следует отнести литий, рубидий, цезий. Хорошо экскретируются с мочой соли двухвалентных металлов (Be, Cd, Сu). Комплексообразование способствует выделению металлов. Металлы могут выделяться не только в свободном, но и в связанном виде. Так, например, свинец и марганец экскретируются как в ионной форме, так и в виде органических комплексов.

Выделение через желудочно-кишечный тракт. Выделение промышленных ядов через желудочно-кишечный тракт начинается уже во рту со слюной. В слюне обнаруживаются некоторые неэлектролиты и тяжелые металлы, например, ртуть, свинец и др. Ядовитые соединения, поступающие в организм, попадают в печень. Из печени с желчью их метаболиты транспортируются в кишечник и выделяются из организма.

Металлы выделяются также через желудочно-кишечный тракт. Они задерживаются в печени и с желчью выделяются в кишечник. В процессе выделения через желудочно-кишечный тракт имеет значение форма, в которой металл накапливается в депо. Металлы длительно сохраняются в печени и полностью выделяются с калом.

Выделение прочими путями. Промышленные яды могут выделяться из организма также с грудным молоком и через кожу с потом. С грудным молоком кормящих женщин выделяются хлорированные углеводороды, главным образом инсектициды (ДДТ, гексахлоран и др.), ртуть, селен, мышьяк и др.

Через кожу выделяются из организма многие неэлектролиты: этиловый спирт, ацетон, фенол, фторированные углеводороды и др. Известно, что содержание сероуглерода в поте превышает erо концентрацию в моче в три раза.