Нарушения межуточного обмена аминокислот
Межуточный обмен аминокислот складывается из реакций дезаминирования, трансаминирования и декарбоксилирования.
Рис. 21. Метаболизм аминокислот.
Дезаминирование. Это этап межуточного обмена аминокислот, при котором происходит образование кетокислот и аммиака. Дезаминирование осуществляется ферментом аминооксидазой, коферментом которой является ФАД или НАД.
L-глутамат → NH3 + α-кетоглутарат
Дезаминирование является универсальным процессом в образовании аминокислот, когда неиспользованные для синтеза белка аминокислоты теряют аминогруппы и превращаются в безазотистые продукты. Из аминогруппы образуется аммиак, а из безазотистой части – кетокислоты.
Благодаря образованию α-кетоглутарата дезаминирование обеспечивает работу цикла Кребса, а благодаря образованию ионов аммония в почечных канальцах – участвует в регуляции кислотно-основного состояния (аммониогенез).
Причины и последствия недостаточности дезаминирования.
Ослаблен этот процесс при поражении печени, при гипоксии, при авитаминозах С, РР и В2.
Нарушение дезаминирования приводит к ослаблению мочевинообразования увеличению аминокислот в крови (аминоацидемии), что сопровождается аминоацидурией.
Также последствиями снижения дезаминирования являются: уменьшение синтеза белка вследствие недостаточности смежных реакций трансаминирования, подавление активности цикла Кребса, энергообразования, ацидоз, гипераммониемия.
Причины и последствия избыточности дезаминирования.
Причинами увеличения дезаминирования могут быть: голодание, когда энергетические потребности организма удовлетворяются за счет белка.
Последствиями усиления дезаминирования являются увеличение образования α-кетоглутарата, ведущее к повышению энергообразования и образования кетокислот, уменьшение синтеза белка, повышение синтеза аммиака и увеличение мочевинообразования.
Трансаминирование (переаминирование) – это обратимый перенос аминогруппы с аминокислоты на кетокислоту без промежуточного образования аммиака с образованием новой кетокислоты (КК) и новой заменимой аминокислоты. Аминокислоты являются донаторами аминогруппы, а кетокислоты – акцепторами.
Трансаминирование протекает в присутствии кофермента, роль которого выполняет пиридоксальфосфат (витамин В6).
Трансаминирование поставляет кетокислоты (щавелевоуксусную кислоту) в цикл Кребса, тем самым поддерживает энергетический обмен, пировиноградную кислоту – для обеспечения глюконеогенеза, синтеза заменимых аминокислот.
При переносе аминогруппы на α-кетоглутарат образуется коллекторное вещество L-глутамат:
А-та + α-кетоглутарат ↔ КК (ПК, ЩУК) + L-глутамат
L-глутамат используется в синтезе мочевины.
Причины уменьшения трансаминирования:
гиповитаминоз В6 вследствие недостаточного содержания витамина в пище, при высокой потребности во время беременности, при нарушении его усвоения и фосфорилирования во время лечения фтивазидом, при подавлении кишечной микрофлоры, частично синтезирующей витамин, под воздействием длительного применения сульфаниламидных препаратов.
ограничение синтеза белка (при голодании и тяжелых заболеваниях печени, при недостаточности коры надпочечников и щитовидной железы).
Последствия уменьшения трансаминирования:
уменьшение синтеза заменимых аминокислот (аланина из пировиноградной кислоты, аспарагина из щавелевоуксусной кислоты);
гипогликемия вследствие уменьшения глюконеогенеза;
аминоацидемия вследствие уменьшения синтеза мочевины;
ацидоз в мышцах вследствие увеличения пировиноградной кислоты (ПК) в мышцах (из-за нарушения ее переноса в печень)
ПК + L-глутамат → α-Аланин + α-кетоглутарат
образование токсических веществ вследствие активации декарбоксилирования.
В процессе трансаминирования из триптофана образуется никотиновая кислота. Отсутствие фосфопиридоксаля приводит к нарушению синтеза никотиновой кислоты, в результате чего развивается пеллагра.
При ряде причин (избыток кетокислот (ПК, α-кетоглутарата, увеличении глюкокортикоидов) отмечается повышение трансаминирования.
Последствия повышенного трансаминирования:
уменьшение содержания незаменимых аминокислот
снижение синтеза белка,
повышение синтеза мочевины и гиперазотемия.
Если в отдельных органах возник некроз (панкреатит, гепатит, инфаркт миокарда или легких), то вследствие разрушения клеток тканевые трансаминазы поступают в кровь и повышение активности в крови является одним из диагностических тестов. Повышение уровня аспартатаминотрансферазы (АСТ) характерно для болезней сердца и аланинаминотрансферазы (АЛТ) – характерно для болезни печени.
Декарбоксилирование. Это процесс отщепления карбоксильных групп от аминокислот в виде CO2.
Аминокислота → Амины (биогенные) + СO2
Первичные амины образуются при декарбоксилировании аминокислот. В эту реакцию вступают вcе аминокислоты. Процесс декарбоксилирования осуществляется специфическими декарбоксилазами, коферментом которых является фосфопиридоксаль (витамин В6).
Декарбоксилированию с образованием биогенных аминов и углекислоты подвергаются только некоторые аминокислоты.
гистидин → гистамин
Содержание гистамина повышается при аллергических заболеваниях (бронхиальная астма, отек Квинке и др.), при ожогах, распаде опухолей, при шоках (анафилактическом, травматическом и гемотрасфузионном), при укусах ядовитых насекомых, при нервном возбуждении, кислородном голодании. Избыток гистамина повышает проницаемость сосудов, вызывает их дилатацию, нарушает микроциркуляцию, вызывает спазм гладкой мускулатуры.
триптофан → триптамин→серотонин
Серотонин образуется в митохондриях хромаффинных клеток кишечника. Разрушается в основном в легких с помощью фермента аминооксидазы. Серотонин повышает тонус гладкой мускулатуры, тонус и резистентность сосудов, является медиатором нервных импульсов в ЦНС, уменьшает агрессивность. Увеличивается содержание серотонина в крови при карциноиде кишечника, при обострении хронического панкреатита, иммобилизационном стрессе у крыс.
глутаминовая к-та → гамма-аминомасляная (ГАМК)
Гамма-аминомасляная кислота (ГАМК) тормозит синаптическую передачу поверхностных слоев коры головного мозга.
тирозин → тирамин (фальш-медиатор)
ДОФА → дофамин
цистин → таурин
Причинами повышения содержания биогенных аминов могут быть не только увеличение декарбоксилирования соответствующих аминокислот, но также угнетение окислительного распада аминов и нарушение их связи с белками. Так, например, при гипоксических состояниях, ишемии, деструкции тканей (травмы, облучение и т.д.) ослабляются окислительные процессы, что уменьшает превращение аминокислот по пути их обычного распада и усиливает декарбоксилирование.
Появление большого количества биогенных аминов в тканях (особенно гистамина и серотонина) может вызвать значительные нарушения местного кровообращения, повышение проницаемости сосудов и повреждение нервной системы.
Снижение активности декарбоксилирования отмечается при гипоксии, дефиците витамина В6.
Гипоксия и ацидоз снижают выработку ГАМК, при дефиците которой возникают судороги, недостаточное образование нейромедиатора серотонина вызывает нарушение эмоций.
- Министерство здравоохранения республики беларусь
- Оглавление
- Глава 1. Патология углеводного обмена. Сахарный диабет.
- Глава 2. Нарушения липидного обмена. Атеросклероз. Ожирение. Жировая дистрофия органов. Желчно-каменная болезнь.
- Глава 3. Патология белкового обмена. Патология нуклеопротеидного обмена. Подагра. Голодание.
- Глава 4. Нарушения водно-электролитного и минерального обмена. Отеки.
- Глава 5. Патология кислотно-основного состояния (кос). Ацидозы. Алкалозы.
- Глава 6. Патология обмена витаминов.
- Витамин н – биотин
- Витамин к (Нафтохиноны, антигеморрагический витамин)
- Перечень сокращений:
- Глава 1. Патология углеводного обмена. Сахарный диабет
- Нарушение расщепления и всасывания углеводов
- Лактазная недостаточность
- Нарушения межуточного обмена углеводов
- Синтез липидов из углеводов
- Циклы Кори и аланина
- Роль инсулина в регуляции обмена веществ
- Нарушения уровня глюкозы в крови
- Гипогликемия
- Сахарный диабет
- Патогенез изсд Развитие изсд включает ряд стадий:
- Патогенез инсд
- Тесты толерантности к глюкозе
- Осложнения сахарного диабета
- Диабетические ангиопатии
- Метаболический синдром (мс) (синдром инсулинорезистентности, синдром X)
- Задачи:
- Глава 2. Нарушения липидного обмена. Атеросклероз. Ожирение. Жировая дистрофия органов
- Нарушение расщепления и всасывания липидов в жкт
- «Феномен просветления плазмы крови»
- Патология межуточного обмена липидов. Роль печени
- ЛипопротеиНы крови. Характеристика
- Апопротеины
- Холестерол, его роль в организме. Нарушение обмена холестерола
- Атеросклероз
- Факторы риска атеросклероза
- Эйкозаноиды
- Лейкотриеновый путь
- Метаболические предпосылки развития желчно-каменной болезни
- Образование и метаболизм фосфолипидов
- Нарушения депонирования жира в жировых депо (ожирение, исхудание)
- Виды ожирения
- Жировая дистрофия и инфильтрация органов
- Исхудание
- Перекисное окисление липидов (пол)
- Глава 3. Патология белкового обмена. Патология обмена нуклеопротеинов. Подагра. Голодание
- Виды нарушения азотистого баланса
- Белково-калорийная недостаточность
- Нарушение переваривания и недостаток всасывания белка;
- Нарушение биосинтеза и распада белка в органах и тканях
- Сахарный диабет (недостаток инсулина);
- Обмен аминокислот и его нарушение
- Синтез других азотсодержащих соединений
- Нарушения межуточного обмена аминокислот
- Наследственные нарушения обмена аминокислот
- Диспротеинемии
- Нарушение образования и выведения конечных продуктов белкового обмена. Гиперазотемии
- Патология обмена нуклеОпротеидов
- Голодание
- Лечебное голодание
- Задачи:
- Глава 4. Патология водно-электролитного и минерального обмена. Отеки
- Основные механизмы регуляции водно-электролитного обмена
- Нарушение водно-электролитного баланса
- Дегидратация
- Гипергидратация
- Патология обмена макроэлементов
- Нарушения обмена натрия
- Нарушение обмена калия
- Нарушение обмена магния
- Нарушение кальциево-фосфорного обмена
- Нарушение обмена хлора и гидрокарбоната
- Биологическая роль и патология обмена микроэлементов
- Железо (Fe)
- Медь (Сu)
- Цинк (Zn)
- Кадмий (Сd)
- Кобальт (Со)
- Молибден (Мо)
- Фтор (f)
- Глава 5. Патология кислотно-основного состояния (кос). Ацидозы. Алкалозы
- Роль буферных систем, легких и почек в регуляции кос
- Показатели кос:
- Виды нарушений кос
- Ситуационные задачи:
- Ответы к ситуационным задачам:
- Глава 6. Патология обмена витаминов
- Гиповитаминозы
- Витамин в2 (рибофлавин)
- Витамин в6 (пиридоксин)
- Витамин в12 (цианокобаламин)
- Витамин с (аскорбиновая кислота)
- Витамин р (биофлавоноиды)
- Фолиевая кислота
- Недостаточность фолатов развивается более быстро, чем дефицит витамина в12. Тканевые запасы фолатов исчерпываются в течение 3-6 месяцев.
- Витамин н – Биотин
- Ежедневная потребность в биотине для ребенка в возрасте до 1 года – 1-15 мкг, с 1 до 7 лет – 15-30 мкг, с 7 до 15 лет – 30-100 мкг.
- Патология обмена жирорастворимых витаминов витамин а
- Суточная потребность для взрослого человека - около 5000 ме или 1,5 мг (1 ме - 0,344 мкг).
- Витамин d (кальциферол)
- Физиологические и фармакологические эффекты
- Суточная потребность в витамине d для людей всех возрастных категорий составляет около 400 ме (10 мкг).
- Витамин к (нафтохиноны, антигеморрагический витамин)
- Литература:
- Приложение
- Показатели крови