2.3.4. Определение аминокислотного состава
Определение аминокислотного состава белков может быть осуществлено различными методами: химическим, хроматографическим, микробиологическим и изотопным. Чаще используются хроматографические методы.
Бумажная хроматография. Бумажная хроматография используется для идентификации компонентов смеси аминокислот с ди- и три-пептидами, получаемой при частичном гидролизе белков и полипептидов.
Гидролиз может быть осуществлен кислотным, щелочным или ферментативным методом. Кислотный метод используется чаще (6 н. HCl, 8 н. H2SO4). Гидролиз проводят при нагревании, иногда при повышенном давлении. Показателями окончания гидролиза могут служить: прекращение нарастания карбоксильных или аминных групп в гидролизате, либо отрицательная биуретовая реакция. Избыток гидролизующего реагента удаляют: серную кислоту осаждают Ca(OH)2, соляную кислоту отгоняют в вакууме, а остаток кислоты осаждают нитратом серебра.
Компоненты гидролизата распределяются между водой, адсорбированной на целлюлозе и являющейся неподвижной фазой, и органическим растворителем, подвижной фазой, которая движется вдоль листа вверх или вниз. В качестве подвижной фазы используется смесь бутанол-уксусная кислота-вода (4:1:5). Более липофильные аминокислоты сильнее увлекаются органическим растворителем, более гидрофильные – проявляют большую тенденцию связываться с неподвижной фазой. Гомологические соединения, отличающиеся даже на одно метиленовое звено, движутся с различной скоростью и легко могут быть разделены. По окончании хроматографии бумагу высушивают и обрабатывают проявителем (0,5% раствор нингидрина в смеси ацетон-ледяная уксусная кислота-вода) и нагревают в течение нескольких минут. Аминокислоты проявляются в виде окрашенных пятен. Подвижность – постоянная величина, характерная для каждого соединения возрастает с увеличением молекулярной массы. Для аминокислот с неразветвленной цепью величина подвижности несколько больше, чем для соответствующих изомеров. Введение в молекулу полярных групп снижает подвижность соединения. Аминокислоты с объемными неполярными боковыми цепями (лейцин, изолейцин, фенилаланин, триптофан и др.) перемещаются быстрее, чем аминокислоты с более короткими неполярными боковыми цепями (пролин, аланин, глицин) или с полярными боковыми цепями (треонин, аргини, цистеин, гистидин, лизин). Это обусловлено большей растворимостью полярных молекул в гидрофильной стационарной фазе и неполярных – в органических растворителях.
Бумажная хроматография может быть использована для количественной оценки содержания аминокислот. Каждое пятно вырезают и элюируют подходящим растворителем; затем проводят количественный колориметрический (нингидриновый) анализ. В другом варианте бумагу опрыскивают нингидрином и измеряют с помощью фотометра интенсивность окрашивания пятна в отраженном или проходящем свете. При полуколичественной оценке содержание аминокислот оценивают по площади пятен на хроматограмме, которые пропорциональны концентрациям аминокислот в разделяемой смеси.
Тонкослойная хроматография. Для разделения и определения аминокислот может быть также использована тонкослойная хроматография. ТСХ, как известно, существует в двух вариантах. Распределительная ТСХ сходна с распределительной на бумаге и адсорбционная ТСХ, основана совершенно на других принципах.
При проведении РТСХ на порошке целлюлозы или других относительно инертных носителях можно использовать такие же системы растворителей и такие же проявляющие реагенты, как и при хроматографии на бумаге.
Разделение с помощью АТСХ определяется способностью растворителя (этот растворитель не обязательно является бинарной или более сложной смесью) элюировать компоненты образца с места его адсорбции на активированном сорбенте. Например, на нагретом силикагеле. АТСХ применима для разделения таких неполярных соединений, как липиды, но не для разделения аминокислот и большинства пептидов. Для разделения аминокислот используют РТСХ, которая позволяет достаточно быстро разделять и определять 22 аминокислоты белковых гидролизатов.
Аминокислоты в белковом гидролизате могут быть определены также методом газовой хроматографии, но перед хроматографическим анализом аминокислоты как правило переводят в летучие соединения.
-Взаимодействие с нингидрином. Образуются соответствующие альдегиды.
Таким образом, получают смесь альдегидов и анализируют ее. Это простейший случай, пригоден лишь для некоторых аминокислот.
-Переводят аминоксилоты в летучие эфиры (алкильные эфиры, метильные эфиры оксикислот, метиловые эфиры хлорзамещенных кислот и др.).
Выбор производных зависит от исследуемой смеси аминокислот.
Ионообменная хроматография. В настоящее время аминокислотный состав пищевых продуктов определяется исключительно с помощью автоматической ионообменной хроматографии.
Ионообменная хроматография основана на обратимом стехиометрическом обмене ионов, находящихся в растворе, на ионы, входящие в состав ионообменника (катионита, анионита) и на различной способности разделяемых ионов к ионному обмену с фиксированными ионами сорбента, образующимися в результате диссоциации ионогенных групп. Для органических ионов на электростатическое взаимодействие с фиксированными зарядами ионита накладывается гидрофобное взаимодействие органической части иона с матрицей ионита. Чтобы уменьшить его вклад в удерживание органических ионов и добиться оптимальной селективности их разделения, к водному элюенту добавляют органический компонент (1–25% метанола, изопропанола, ацетонитрила). |
В методе Мура и Штейна используют короткую и длинную колонки, заполненные смолой из сульфонированного полистирола в Na+ – форме. Когда кислотный гидролизат при рН = 2 наносят на колонку, аминокислоты связываются в результате катионного обмена с ионами натрия. Далее колонку элюируют раствором цитрата натрия при заранее запрограммированных значениях рН и температуры. Короткую колонку элюируют одним буфером, длинную – двумя. Элюат обрабатывают нингидрином, измеряя интенсивность окраски с помощью проточного колориметра. Данные автоматически регистрируются на ленте самописца и могут передаваться в компьютер для вычисления площади под пиком.
Высоковольтный электрофорез на инертных носителях. В биохимии широкое применение нашло разделение аминокислот, полипептидов и других амфолитов (молекул, суммарный заряд которых зависит от рН среды) под действием наложенного постоянного электрического поля. Это метод высоковольтного электрофореза на инертных носителях. При разделении аминокислот в качестве инертных носителей чаще всего используют полоски бумаги или тонкие слои целлюлозного порошка. Разделение проводят в течение 0,5–2 ч при напряжении 2000–5000 В в зависимости от суммарных зарядов амфолитов и их молекулярных масс. Среди молекул, несущих одинаковый заряд, более легкие мигрируют быстрее. Но более важным параметром при разделении является суммарный заряд. Метод применяется для разделения аминокислот, низкомолекулярных пептидов, некоторых белков, нуклеотидов. Образец помещают на носитель, смачивают буфером при соответствующем рН и соединяют с буферным резервуаром полоской фильтровальной бумаги. Бумагу прикрывают стеклянной пластинкой или погружают в углеводородный растворитель для охлаждения. В электрическом поле молекулы, несущие при данном рН отрицательный заряд, мигрируют к аноду, а те, которые несут положительный заряд, – к катоду. Далее высушенную электрофореграмму «проявляют» нингидрином (при работе с аминокислотами, пептидами) или измеряют поглощение в УФ-свете (при работе с нуклеотидами).
Выбор рН определяется значениями рК диссоциирующих групп, входящих в состав молекул смеси. При рН 6,4 глутамат и аспарат несут заряд –1 и движутся к аноду; разделение их осуществляется благодаря различию в молекулярной массе. Лизин, аргинин и гистидин движутся в противоположном направлении, а все другие аминокислоты, входящие в состав белка, остаются вблизи места нанесения. При разделении пептидов, образовавшихся в результате ферментативного расщепления, уменьшение рН до 3,5 приводит к увеличению заряда катионных групп и обеспечивает лучшее разделение.
Аминокислоты несут по крайней мере две слабо ионизированные группы: -СООН и -NH3+. В растворе эти группы находятся в двух формах, заряженной и незаряженной, между которыми поддерживается протонное равновесие: R-COOH R-COO– + H+ R-NH3+ R-NH2 + H+ (сопряженные кислоты и основания) R-COOH и R-NH3+ – слабые кислоты, но первая на несколько порядков сильнее. Поэтому чаще всего (плазма крови, межклеточная жидкость рН 7,1–7,4) карбоксильные группы находятся в виде карбоксилатных ионов, аминогруппы протонированы. Аминокилоты в молекулярном (недиссоциированном) виде не существуют ни при каких рН. Примерные значения рК -аминокислоты и -аминогруппы в -аминокислоте равны 2 и 10 соответственно. Полный (суммарный) заряд (алгебраическая сумма всех положительных и отрицательных зарядов) аминокислоты зависит от рН, т.е. от концентрации протонов в растворе. Заряд аминокислоты можно изменить, варьируя рН. Это облегчает физическое разделение аминокислот, пептидов и белков. Значение рН при котором суммарный заряд аминокислоты равен нулю и поэтому она не перемещается в постоянном электрическом поле, называется изоэлектрической точкой (pI). Изоэлектрическая точка находится посредине между ближайшими значениями рК диссоциирующих групп. |
Методы бумажной, тонкослойной хроматографии, микробиологические, газохроматографические и ряд других, в настоящее время практически не используются вследствие худшей воспроизводимости и большой длительности. Современные хроматографы позволяют определять аминокислотный состав смеси, содержащей лишь 10–7–10–9 моль каждого компонента с воспроизводимостью до 5% за 2–4 часа.
Анализ аминокислотного состава включает полный гидролиз исследуемого белка или пептида и количественное определение всех аминокислот в гидролизате. Поскольку при нейтральных рН пептидные связи стабильны, применяют кислотный или щелочной катализ. Ферментативный катализ для полного гидролиза менее пригоден. Полный гидролиз белка на составляющие аминокислоты неизбежно сопровождается частичной потерей некоторых аминокислотных остатков. Для гидролиза обычно используется 6 н. водный раствор соляной кислоты (110ºС), в вакуумированной ампуле. Количественное определение аминокислот в гидролизате проводят с помощью аминокислотного анализатора. В большинстве таких анализаторов смесь аминокислот разделяют на сульфокатионитах, а детектирование осуществляют спектрофотометрически по реакции с нингидрином или флуориметрически с о-фталевым диальдегидом.
Однако данные по аминокислотному составу однотипных продуктов, полученные в разных лабораториях по отдельным аминокислотам, иногда различаются до 50%.
Эти различия обусловлены не только сортовыми, видовыми или технологическими различиями, а главным образом условием проведения гидролиза пищевого продукта. При стандартном кислотном гидролизе (6 н. HСl, 110–120ºС, 22–24 часа) происходит частичное разрушение некоторых аминокислот, в том числе треонина, серина (на 10–15% и тем больше, чем дольше проводится гидролиз) и особенно метионина (30–60%) и цистина 56–60%, а также практически полное разрушение триптофана и цистеина. Этот процесс усиливается в присутствии больших количеств углеводов в продукте. Для количественного определения метионина и цистина рекомендуется проводить предварительное их окисление надмуравьиной кислотой. При этом цистин превращается в цистеиновую кислоту, а метионин в метионин-сульфон, которые весьма устойчивы при последующем кислотном гидролизе.
Цистин Цистеиновая кислота
Трудной задачей в аминокислотном анализе является определение триптофана. Как уже говорилось, при кислотном гидролизе происходит почти полное его разрушение (до 90%). Поэтому для определения триптофана проводят один из вариантов щелочного гидролиза 2 н. NaOH, 100ºС, 16–18 часов в присутствии 5% хлорида олова или 2 н. гидроокиси бария, при которых он разрушается незначительно (до 10%). Минимальное разрушение происходит в присутствии тиогликолевой кислоты и предварительно гидролизованного крахмала. (При щелочном гидролизе происходит разрушение серина, треонина, аргинина и цистеина). Гидролизат после нейтрализации смесью лимонной и соляной кислот немедленно (во избежание студнеобразования) анализируют на аминокислотном анализаторе. Что касается многочисленных химических методов определения триптофана, то они, как правило, в пищевых продуктах плохо воспроизводимы и поэтому их использовать не рекомендуется.
Для мясных продуктов дополнительной необходимой аминокислотой является оксипролин, который характеризует количество соединительных тканных белков в мясе. Его можно определять ионообменной хроматографией с помощью автоматических анализаторов или химическим колориметрическим методом. Метод основан на нейтрализации кислотного гидролизата до рН 6,0, последующем окислении оксипролина с помощью 1,4% раствора хлорамина Т (или хлорамина Б) в смеси пропилового спирта и буфера, колориметрическом определении при 533 нм продуктов окисления оксипролина после реакции с 10%-ным раствором пара-диметиламинобензальдегида в смеси хлорной кислоты и пропилового спирта (1:2).
В связи с тем, что тирозин, фенилаланин и пролин в присутствии кислорода могут частично окисляться, стандартный кислотный гидролиз рекомендуется проводить в атмосфере азота. Ряд аминокислот, в том числе лейцин, изолейцин и валин, требуют для своего полного выделения из белков более длительного кислотного гидролиза – до 72 ч. В биохимии при анализе белков гидролизуют параллельные пробы в течение 24, 48, 72 и 96 ч.
Для точного количественного определения всех аминокислот требуется проводить 5 различных гидролизов, что весьма удлиняет определение. Обычно же проводят 1–2 гидролиза (стандартный с соляной кислотой и с предварительным оксилением надмуравьиной кислотой).
Во избежание потерь аминокислот удаление избытка кислоты при кислотном гидролизе следует проводить немедленно многократным выпариванием в вакуум-эксикаторе с добавлением дистиллированной воды.
При правильной работе анализатора ионообменные колонки работают без замены смолы довольно долго. Однако, если образцы содержат заметные количества красящих веществ и липидов, то колонка быстро забивается и для восстановления ее разделительных способностей требуется многократная регенерация, иногда с перенабивкой колонки. Поэтому, для продуктов, содержащих более 5% жира, рекомендуется предварительно удалять липиды экстракцией. В таблице 2.3 приведены условия пробоподготовки основных пищевых продуктов при анализе аминокислотного состава.
Таблица 2.3. – Условия подготовки проб пищевых продуктов к анализу
Продукт | Способ удаления липидов | Весовое соотношение белок: HCl (6М) |
Белковые концетнраты (изоляты) | Не требуется | 1:200 |
Мясо, рыба, мясные и рыбные консервы, субпродукты) | Экстракция 10-кратным количеством диэтилового эфира 3–4 раза или смесью этанол-хлороформ (1:2) 10-кратным количеством 2 раза | 1:250 |
Молоко и молочные продукты | Экстракция 10-кратным к навеске количеством смесью этанол-хлороформ (1:2) 2 раза | 1:1000 |
Зерно и зернопродукты | Не требуется | 1:1000 |
Растительные продукты | Не требуется | 1:500 |
Мясо-растительные и рыбо-растительные продукты | Экстракция 10-кратным количеством диэтилового эфира 3-4 раза; смесью этанол-хлороформ (1:2) 10-кратным количеством к навеске 2 раза | 1:1000 |
Яйцо, яичные продукты | Экстракция смесью этанол- хлороформ (1:2), 10-кратным количеством к навеске 2 раза | 1:200 |
- Введение
- Глава 1. Хакактеристика пищевых продуктов
- § 1.1. Особенности формирования органолептических свойств
- 1.1.1. Химический состав
- 1.1.2. Биохимические особенности, определяющие органолептические свойства
- § 1.2. Особенности процесса усвоения пищевых продуктов
- 1.2.1. Усвоение белков
- 1.2.2. Усвоение углеводов
- 1.2.3. Усвоение жиров
- Желчные кислоты
- Контрольные вопросы:
- Глава 2. Качество продуктов питания
- § 2.1. Виды и отбор проб. Пробоподготовка
- § 2.2. Вода в пищевых продуктах и ее определение
- 2.2.1. Определение общего содержания влаги
- 2.2.2. Определение свободной и связанной влаги
- Контрольные вопросы:
- § 2.3. Белки
- 2.3.1. Классификация белков и их значение для жизнедеятельности организма
- 2.3.2. Определение общего белка
- 2.3.3. Определение аминокислот
- 2.3.4. Определение аминокислотного состава
- Контрольные вопросы:
- § 2.4. Углеводы
- 2.4.1 Классификация углеводов и их функции в организме
- 2.4.2. Усваиваемые и неусваиваемые углеводы. Органические кислоты
- 2.4.3. Определение углеводов в продуктах питания
- Контрольные вопросы:
- § 2.5. Жиры (липиды)
- 2.5.1. Состав липидов. Функции липидов и жирных кислот в организме
- 2.5.2. Методы извлечения и количественного определения липидов
- 2.5.3. Химические характеристики липидов
- 2.5.4. Определение фракционного состава липидов и состава жирных кислот пищевых продуктов
- Контрольные вопросы:
- § 2.6. Витамины
- 2.6.1. Жирорастворимые витамины
- 2.6.2. Водорастворимые витамины
- 2.6.3. Витаминоподобные вещества
- 2.6.4. Определение витаминов в продуктах питания
- 1 Стадия
- 2 Стадия
- Контрольные вопросы:
- § 2.7. Минеральные вещества
- 2.7.1. Макроэлементы
- 2.7.2. Микроэлементы
- Контрольные вопросы:
- Глава 3. Безопасность продуктов питания
- Классификация загрязняющих веществ пищевых продуктов. В литературе встречаются различные виды классификаций загрязняющих веществ пищевых продуктов. Рассмотрим некоторые из них.
- Контрольные вопросы:
- § 3.1. Бактериальные токсины
- Контрольные вопросы:
- Контрольные вопросы:
- § 3.3. Токсичные элементы
- Контрольные вопросы:
- § 3.4. Радиоактивное загрязнение
- Контрольные вопросы:
- § 3.5. Диоксины и диоксинподобные соединения (полихлорированные ароматические соединения)
- Контрольные вопросы:
- § 3.6. Полициклические ароматические углеводороды
- Контрольные вопросы:
- § 3.7. Пестициды
- Контрольные вопросы:
- § 3.8. Нитраты, нитриты, нитрозоамины
- Контрольные вопросы:
- § 3.9. Пищевые добавки
- Контрольные вопросы:
- § 3.10. Генетически модифицированные продукты
- Агробактериальная трансформация
- Баллистическая трансформация
- Контрольные вопросы:
- Глава 4 лабораторный практикум
- § 4.1. Оценка органолептических свойств нативного крахмала
- § 4.2. Выделение и идентификация белка
- § 4.3. Определение белкового азота в мясе и мясных продуктах
- § 4.4. Определение диастазного числа меда
- Цель: овладеть методикой диастазного числа меда и определить качество меда по данному показателю.
- 2.1. Подготовка к испытанию.
- § 4.5. Определение массовой доли редуцирующих сахаров и сахарозы в натуральном меде
- Выдержка из государственного стандарта «Мед натуральный» гост 19792-87
- § 4.6. Определение сырой клетчатки в овощах
- § 4.7. Определение содержания аскорбиновой кислоты в соках по методу Тильманса
- Вещества, используемые в анализе:
- 3. Изучение термостойкости витамина с. Четыре пробы стандартного раствора ак по 5 мл нагреть в конических колбах:
- § 4.8. Определение массовой доли кофеина фотометрическим методом
- Выдержка из межгосударственного стандарта «Кофе натуральный жареный» гост 6805-97
- § 4.9. Экстракционно-фотометрическое определение кофеина в чае
- § 4.10. Определение содержания таннина в чае
- Список рекомендуемой литературы
- Приложение Микроорганизмы
- Республиканское унитарное предприятие «Научно-практический центр национальной академии наук беларуси по продовольствию» Республика Беларусь, 220037, г. Минск, ул. Козлова, 29,