Глава 1. Общие представления о биотехнологии
Современные биотехнологические производства — сложный комплекс взаимосвязанных биофизических, биохимических и физико-химических процессов; в этих технологических процессах производство и биология представляют единое целое.
БТ - это использование культур клеток, бактерий, животных, растений, метаболизм и биологические возможности которых обеспечивают выработку специфических веществ. В фармацевтической промышленности БТ охватывает разработку вакцин, синтез гормонов, ферментов, интерферонов, антибиотиков, аминокислот, витаминов, алкалоидов, полисахаридов и других биологически активных веществ (БАВ).
В историческом смысле БТ возникла, когда дрожжи были впервые использованы при изготовлении пива, а бактерии - для получения йогурта.
С 1961 г. БТ тесно связана с исследованиями в области промышленного производства коммерческих продуктов при участии живых организмов, биологических систем и процессов. С этого времени БТ встала на прочный фундамент микробиологии, биохимии и промышленной инженерии.
Промышленный биотехнологический процесс, в котором для производства коммерческих продуктов используются микроорганизмы, обычно состоит из трех ключевых этапов:
1. Исходная обработка: обработка сырья для использования в качестве источника питательных веществ для микроорганизма-мишени.
2. Ферментация и биотрансформация: рост микроорганизма-мишени в большом (обычно более 100 л) биореакторе (ферментация) с последующим образованием нужного метаболита, например антибиотика, аминокислоты или белка (биотрансформация).
3. Конечная обработка: очистка целевого продукта от компонентов культуральной среды или от клеточной массы (рис. 1).
Цель биотехнологических исследований - максимальное повышение эффективности каждого из этих этапов и поиск микроорганизмов, с помощью которых можно получить целевой продукт.
Наиболее трудным для оптимизации был этап биотрансформации. При использовании природных микробных штаммов выход конечного продукта часто оказывался существенно ниже оптимального. Традиционные схемы генетического усовершенствования бактерий включают скрининг, отбор и тестирование огромного количества колоний. Такие работы высокозатратны, занимают много времени и при этом можно рассчитывать только на усовершенствование уже существующих, передаваемых по наследству свойств штамма, а не на расширение его генетических возможностей. И все же к концу 70-х таким образом были усовершенствованы производственные процессы получения целого ряда конечных продуктов.
С развитием технологии рекомбинантных ДНК природа и возможности БТ резко изменились. Стратегия переноса функциональной единицы наследственности (гена) из одного организма в другой была разработана американскими учеными Стенли Козном и Гербертом Бойе-ром в 1973 г. Появилась возможность оптимизировать этап биотрансформации - не просто отбирать высокопродуктивные штаммы микроорганизмов и эукариотических клеток, а создавать принципиально новые, используя их в качестве «биологических фабрик» по производству инсулина, интерферонов, интерлейкинов, гормона роста, вирусных антигенов и множества других белков. Технология рекомбинантных ДНК позволяет получать в больших количествах ценные низкомолекулярные вещества и макромолекулы, которые в естественных условиях синтезируются в минимальных количествах. Технология рекомбинантных ДНК - это быстродействующий, эффективный, мощный инструмент, обеспечивающий создание микроорганизмов с заранее заданными генетическими характеристиками. Этот инструмент может работать не только с микроорганизмами, но с растениями и животными.
На стыке технологии рекомбинантных ДНК и БТ возникла динамичная, высококонкурентоспособная Молекулярная БТ (МБТ). Биотехнологическая составляющая МБТ - промышленная микробиология и химическая инженерия; молекулярная составляющая - молекулярная биология, молекулярная генетика бактерий, энзимология нуклеиновых кислот.
История развития МБТ (даты, события)
1917 — введен термин БТ;
1943 - произведен в промышленном масштабе пенициллин;
1944-показано, что генетический материал представляет собой ДНК;
1953-установлена структура инсулина, расшифрована структураДНК;
1961 - учрежден журнал «Вiotechnology and Bioengineering»;
1961-1966 - расшифрован генетический код, оказавшийся универсальным для всех организмов;
1953-1976 - расшифрована структура ДНК, ее функции в сохранении и передаче организмом наследственной информации, способность ДНК организовываться в гены;
1963-осуществлён синтез биополимеров по установленной структуре;
1970 - выделена первая рестрикционная эндонуклеаза;
- осуществлён синтез ДНК;
1972 - синтезирован полноразмерный ген транспортной РНК;
1975 - получены моноклональные антитела;
1976 - разработаны методы определения нуклеотидной последовательности ДНК;
1978 - фирма «Genentech» выпустила человеческий инсулин, полученный с помощью Е. соli;
1981 - синтезированы фрагменты нуклеиновых кислот;
1982 - разрешена к применению в Европе первая вакцина для жи-
вотных, полученная по технологии рекомбинантных ДНК;
1983 - гибридные Ti-плазмиды применены для трансформации растений;
1990-официально начаты работы над проектом «геном человека»; 1994-1995 - опубликованы подробные генетические и физическиекарты хромосом человека;
1996-ежегодный объем продаж первого рекомбинантного белка (эритропоэтина) превысил 1 млрд долларов;
1997 - клонировано млекопитающее из дифференцированной соматической клетки;
2003 - расшифрован геном (набор генов, присущий организму) человека, содержащий приблизительно 30 тысяч генов и три миллиарда «букв» молекул ДНК.
В последние годы родилась новая отрасль генетики - геномика, изучающая не отдельные гены а целые геномы. Достижения молекулярной биологии и генной инженерии дали человеку возможность читать генетические тексты вначале вирусов, бактерий, дрожжевых грибков, многоклеточных животных. Например, знание геномной структуры патогенных бактерий очень важно при создании рационально сконструированных вакцин, для диагностики и других медицинских целей.Апрель 2003 года ознаменовался сенсацией в биологии и медицине: Международный консорциум по составлению генетической карты человека (Центр геномного секвенирования: Вашингтонский университет я Сенгеровский центр в Кембридже) опубликовал заявление, что удалось полностью расшифровать геном человека. Титанический труд сотен исследователей из США, Великобритании, Германии, Франции, Японии и Китая занял более 10 лет и обошелся почти в 3 млрд долларов. При этом были разработаны высокоэффективные технологии и инструменты картирования, такие как коллекции клеток, в которых есть небольшие фрагменты каждой из хромосом или искусственные дрожжевые хромосомы, содержащие крупные фрагменты хромосом человека, бактериальные и фаговые векторы, позволяющие размножить (клонировать) фрагменты ДНК человека. Быстро прогрессировала техника секвенирования (например, многоканальный капиллярный электрофорез ускорил и удешевил расшифровку первичной структуры ДНК). Созданы компьютерные программы, позволяющие находить гены в расшифрованных участках ДНК.
Ранее было объявлено о «черновой» расшифровке генома человека с точностью 99,9%, сейчас эта точность увеличена на порядок. Осталось заполнить, расшифровать в геноме примерно 400 «дырок». В геноме человека прочитано 3 млрд символов, но решающее значение принадлежит пониманию смысла прочитанного. Из 30 тыс. генов, составляющих геном человека, науке известно о предназначении лишь трети их числа. Полная расшифровка генома человека позволит справиться с множеством недугов, таких как наследственные болезни, рак, заболевания сердечно-сосудистой системы, психические и многие другие.
В России существует своя программа «Геном человека», не зависимая от Международного консорциума, гораздо более скромная по финансовым возможностям. Ученые на уровне генома изучают связь различных генов с наиболее распространенными заболеваниями, ДНК-диагностику, диагностику хромосомных нарушений, молекулярный ци-тогенетический анализ. Геномная медицина «корректирует» традиционные методы лечения заболеваний с учетом индивидуальных генетических данных каждого человека. Генетическую обусловленность наследственных заболеваний определяют около 3 тыс. генов.
Геномные методы идентификации личности, разработанные и практические реализованные в геномике человека, имеют большое значение для общества. Криминалистика получила в свое распоряжение абсолютно достоверный метод доказательства: для геномной дактилоскопии достаточно лишь одной капли крови, одного волоса, кусочка ногтя, следов пота, спермы, слюны, перхоти.
Молекулярная биотехнология (МБТ) пользуется достижениями разных областей науки и применяет их для создания разнообразных коммерческих продуктов (рис. 2).
Знания и методы биохимии, микробиологии, молекулярной биоло-. гии, генетики, химической технологии, электроники позволяют использовать потенциал живых клеток в интересах человека. Знания и умения биотехнолога простираются от биохимии и кинетики физиологических процессов в биосистемах (микроорганизм, клетка, вирус) до математического моделирования, экономики, вопросов управления биотехнологическими процессами, объединёнными в сложные системы.
Биотехнология получила возможность воспроизводить нужные про- дукты в неограниченных количествах, используя новые технологии, позволяющие переносить гены в микробные клетки-продуценты или в
организм млекопитающих (трансгенные животные), синтезировать пептиды, создавать искусственные вакцины - это основные биотехнологические процессы, реализующиеся на уровне клетки или с участием отдельных клеточных структур. В промышленном масштабе подобная БТ
представляет,биоиндустрию.
Г л а в а 2. БИОЛОГИЧЕСКИЕ СИСТЕМЫ, ИСПОЛЬЗУЕМЫЕ В БИОТЕХНОЛОГИИ
Характер биологической системы (микроорганизмы, клеточные линии насекомых, растений и млекопитающих, многоклеточные организмы) исключительно важен для биотехнологического процесса. Во многих случаях именно генетически модифицированная самовоспроизводящаяся биологическая единица (микроорганизм, вирус, растение или животное) является конечным коммерческим продуктом.
Прокариоты и эукариоты. Все живые организмы принято делить на две основные группы: прокариоты и эукариоты. Приблизительно 1,5 млрд лет назад произошел переход от маленьких клеток со сравнительно простой внутренней структурой (так называемых прокариот, к которым относятся различные бактерии) к большим по размеру и значительно более сложно устроенным эукариотическим клеткам, подобным клеткам высших животных и растений.
Основные структурные различия про- и эукариот:
• наличие или отсутствие ядра, содержащего хромосомную ДНК;
• строение и химический состав клеточной стенки;
• наличие или отсутствие субклеточных цитоплазматических ор-ганелл.
В прокариотической бактериальной клетке хромосомная ДНК находится непосредственно в цитоплазме, клетка окружена ригидной клеточной стенкой. В клетке нет субклеточных цитоплазматических орга-нелл (рис. 3). В оптимальных условиях прокариотическая клетка может делиться каждые 20 мин и таким образом давать жизнь более 10 млрд клеток менее чем за сутки.
В эукариотической клетке (рис. 4) имеется ядро, отделенное от цитоплазмы ядерной мембраной, хромосомная ДНК находится в ядре. В цитоплазме содержатся различные субклеточные органеляы: мембраны, окружающие ядро, митохондрии, образующие лабиринт эндоплазмати-ческого ретикулума (ЭПР), где синтезируются липиды и мембранные белки. Мембраны формируют стопки уплощенных пузырьков, составляющих аппарат Гольджи, который участвует в синтезе и транспорте различных органических молекул. Мембраны окружают лизосомы (суб-
клеточные структуры диаметром 0,20-0,5 мкм), содержащие гидроли-тические ферменты, необходимые для внутриклеточного пищеварения.
Мембраны, таким образом, защищают от действия этих ферментов бел-ки и нуклеиновые кислоты самой клетки. Мембраны также окружают пероксисомы, содержащие окислительные ферменты, производящие и разрушающие опасные высокореакционоспособные перекиси (пероксиды). Обмен между внутриклеточными, окруженными мембранами струк-\турами и внеклеточной средой происходит с помощью эндоцитоза.
Различают две группы бактерий - эубактерии, населяющие почву, воду и другие организмы, и архебактерии, встречающиеся в таких средах обитания, как болота, океанские глубины, очень соленые воды и горячие кислые источники.
Исходя из температурного режима, который предпочитают те или иные микроорганизмы, их подразделяют на термофилы (от 45 до 90 °С и выше), мезофилы (от 10 до 47 °С) и психрофилы или психротрофы (от -5 до 35 °С). Микроорганизмы, активно размножающиеся лишь в определенном диапазоне температур, - полезный инструмент для решения различных биотехнологических задач. Например, термофилы часто служат источником генов, кодирующих термостабильные ферменты, а генетически видоизмененные психротрофы используются при пониженной температуре для биодеградации токсичных отходов, содержащихся в почве и воде.
Среди множества биологических объектов, использующихся в МБТ, основными «рабочими лошадками» являются бактерии Еscherichia coli, одноклеточные дрожжи Sacharomyces сеrevisiae и различные клеточные линии животного происхождения. Все они играют важную роль в получении белков, кодируемых клонированными генами.
Е. сoli — грамотрицательная непатогенная подвижная палочка длиной менее 1 мкм. Традиционная среда ее обитания — кишечник человека, может также высеваться из почвы и воды. Штаммы Е. сoli культивируются на обогащенных жидких питательных средах, содержащих аминокислоты, витамины, соли, микроэлементы и источник углерода. Е. соН можно культивировать в аэробных и анаэробных условиях, но для оптимальной продукции рекомбинантных белков Е. соli и другие микроорганизмы обычно выращивают в аэробных условиях. Рост клеточной массы и продукция белка лимитируются содержанием в питательной среде растворенного кислорода, для этого в ферментерах создают условия аэрации.
Кроме Е. соН в МБТ используют множество других микроорганизмов, которые подразделяют на две группы:
• микроорганизмы как источники специфических генов (например, ген, кодирующий стабильную ДНК-полимеразу, которая используется в широкоприменяемой полимеразной цепной реакции — ПЦР; этот ген был выделен из термофильных бактерий и клонирован в Е. соН).
• микроорганизмы, созданные генноинженернымми методами для решения определенных задач (например, различные штаммы Согуnebacterium glutamicumт, генетически модифицирова-ные с целью повышения продукции промышленно важных аминокислот).
Saccharomycesс cereае - непатогенные одноклеточные организмы с диаметром клетки около 5 мкм, во многих отношениях представляют эукариотический аналог Е. сoli. S. сегеvisiае размножаются почкованием, их способность к превращению сахара в этанол и углекислый газ издавна использовалась для изготовления напитков и хлеба. Клетки дрожжей делятся каждые 1,5-2 ч. S. сегеvisiае является удобной моделью для исследования других эукариот, в т.ч. человека, так как многие гены, ответственные за регуляцию клеточного деления S. ссегеvisiае, сходны с таковыми у человека. Это способствовало идентификации и характеристике генов человека, отвечающих за развитие новообразований. Генетическая система дрожжей является непременным участником всех исследований по изучению ДНК человека.
Синтезированный бактериальной клеткой эукариотический белок часто подвергают ферментативной модификации, присоединяя к белковой молекуле низкомолекулярные соединения, что необходимо для правильного функционирования белка. Однако Е. соН и другие прокариоты не способны осуществлять эту модификацию, поэтому для получения полноценных эукариотических белков используют S. сегеvisiае и другие виды дрожжей.
В качестве биологических систем в МБТ используют культуру эукариотических клеток. Кусочек ткани определенного организма (насекомого, растения, млекопитающего) обрабатывают протеолитическими ферментами (трипсином), расщепляющими белки межклеточного материала; при работе с растительными клетками используют ферменты, разрушающие клеточную стенку. Высвободившиеся клетки помещают в питательную среду, содержащую аминокислоты, антибиотики, витамины, соли, глюкозу, факторы роста. В этих условиях (деление клеток млекопитающих происходит примерно раз в сутки) на стенке емкости с культурой образуется клеточный монослой. Если после этого не перенести клетки в емкости со свежей питательной средой, рост прекращается. Обычно удается переносить (перевивать, субкультивировать) и поддерживать до 50-100 клеточных генераций исходной (первичной) клеточной культуры, затем клетки начинают терять способность к делению и гибнут.
В МБТ устойчивые линии используют для крупномасштабного производства вакцин и рекомбинантных белков, для размножения вирусов и выявления белков, которые кодируются клонированными последовательностями ДНК.
Тест-контроль к главам 1-2 Выберите правильные ответы:
1. Определение «Биотехнология - это использование культур клеток, бактерий, животных, растений, метаболизм и биологические возможности которых обеспечивают получение разнообразных лекарственных форм»:
А - верно;
Б — не верно;
В - требует уточнения.
2. Геномика изучает: А - отдельные гены;
Б — совокупность структурных компонентов ДНК;
В - совокупность всех генов организма;
Г - мимические проявления при произношении имени Гена;
Д - механизмы генетических изменений (мутаций).
3. В биотехнологии понятию «биообъект» соответствуют следующие определения:
А - организм, на котором испытывают новые БАВ;
Б — организмы, вызывающие микробную контаминацию технологического оборудования;
В — фермент, используемый для генно-инженерных процессов;
Г - организм, продуцирующий БАВ; Д — фермент, используемый в лечебных целях.
4. Отличительные особенности эукариотической клетки:
А - больший размер;
Б - наличие ядра;
В - ригидная клеточная стенка;
Г — отсутствие субклеточных органелл;
Д - хромосомная ДНК в цитоплазме.
5.Отличительные особенности прокариотической клетки:
А - малый размер;
Б - отсутствие ядра;
В — наличие субклеточных органелл;
Г - многослойная клеточная стенка;
Д - хромосомная ДНК в ядре.
6. Оптимальный температурный режим развития микроорганизмов-мезофилов составляет:
А - 45-90 °С;
Б - 10-47 °С; В - 37 °С;
Г-от-5 до 35 °С;
Д - свыше 90 °С.
7. Типичные направления использования микроорганизмов-психро-филов:
А — источники генов, кодирующих термолабильные ферменты;
Б - источники генов, кодирующих термостабильные ферменты;
В - утилизация токсических отходов;
Г — производство спирта этилового;
Д - производство биогаза.
8. В качестве биологических объектов в биотехнологии используют:
А - Рseudomonas aeruginosa;
Б - Staphylocjccus aureus;
В - Escherichia coli;
Г - С1оstridium tetani;
Д - культуру эукариотических клеток.
9. Способностью превращать (сбраживать) сахар в этанол обладают:
А - Аspergillus oryzae;
Б - Asprgillus terriсо1а;
В — Еscherichia coli;
Г - Ваcillus subtitilis;
Д - Saccharomyces cerevisiае.
10. Отличия Saccharomyces cerevisiае от других прокариотических продуцентов:
А - непатогенность;
Б - аэробный тип развития;
В - анаэробный тип развития;
Г — способность продуцировать полноценные эукариотическиебелки;
Д-неспособность продуцировать полноценные эукариотические
белки.
Г л а в а 3. ДНК, РНК И СИНТЕЗ БЕЛКА
Простые органические молекулы, такие, как аминокислоты или нуклеотиды, ассоциируют с образованием больших полимеров. Две аминокислоты соединяются пептидной связью, два нуклеотида — фос-фодиэфирной. Последовательное повторение этих реакций ведет к образованию линейных полимеров, называемых соответственно полипептидами и полинуклеотидами. Полипептиды или белки и полинуклеоти-ды в форме ДНК и РНК считаются наиболее важными компонентами. Универсальные «кирпичики», из которых состоят белки, - это всего лишь 20 аминокислот, а молекулы ДНК и РНК построены только из четырех типов полинуклеотидов. Клетка содержит оба типа полинук-леотидов - ДНК и РНК; в ходе эволюции они специализировались и работают сообща, выполняя каждый свою функцию. Структура полинуклеотидов хорошо приспособлена для хранения и передачи информации. Химические различия между двумя типами полинуклеотидов делают их приспособленными для решения разных задач. Например, ДНК - хранилище генетической информации, так как ее молекула более стабильна, чем молекула РНК. Частично это обусловлено тем, что при наличии в РНК двух гидроксильных групп этот полинуклеотид в большей степени подвержен гидролизу.
Следовательно, вся информация о строении и функционировании любого живого организма содержится в закодированном виде в его генетическом материале, основу которого составляет ДНК. ДНК - длинная двухцепочечная полимерная молекула. В этой скрученной двойным жгутом гигантской молекуле «записаны» все признаки организма. Последовательность мономерных единиц (дезоксирибонуклеотидов) в одной ее цепи соответствует (комплементарна) последовательности дезоксирибонуклеотидов в другой. Принцип комплементарности обеспечивает идентичность исходных и новосинтезированных молекул ДНК, образующихся при удвоении (репликции).
Механизм комплементарного матричного копирования занимает центральное место в процессах переноса информации в биологических системах. Генетическая информация каждой клетки закодирована в последовательности оснований ее полинуклеотидов, и эта информация
передается из поколения в поколение благодаря комплементарное™ спаривания оснований.
Индивидуальными генетическими элементами со строго специфичной нуклеотидной последовательностью, кодирующими функциональные белки или РНК, являются гены. Гены находятся в ядре клетки, в хромосомах. В некоторых генах всего 800 пар нуклеотидов, в других -около миллиона. У человека 80-90 тыс. генов. Одни гены, называемые структурными, кодируют белки, другие - только молекулы РНК. Информация, содержащаяся в генах, которые кодируют белки, расшифровывается в ходе двух последовательных процессов: синтеза РНК, носящего название транскрипции и синтеза белка - трансляции. Сначала на определенном участке ДНК, как на матрице, синтезируется мРНК (информационная, матричная РНК) — в клетках животных этот процесс осуществляется в ядре. Затем, перенеся информацию из ядра в цитоплазму, в ходе согласованной работы многокомпонентной системы при участии тРНК (транспортных РНК), мРНК, ферментов и различных белковых факторов осуществляется синтез белковой молекулы. Все эти процессы обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот. Аминокислотная последовательность белковой молекулы однозначно задает ее структуру и функции. Нуклеотиды как субъединицы ДНК, РНК выступают также в качестве переносчиков энергии.
Структура ДНК (рис. 5) - это линейный полимер. Его мономерные единицы (нуклеотиды) состоят из азотистого основания, пятиуглерод-ного сахара (пентозы) и фосфатной группы. Фосфатная группа присоединена к 5'-атому углерода моносахаридного остатка, органическое основание - к 1'-атому. Каждому нуклеотиду присвоено название, соответствующее названию входящего в его состав уникального основания. Основания в ДНК двух типов - пуриновые (аденин — А и гуанин — С) и пиримидиновые (цитозин - С, тимин - Т, урацил - U).
Нуклеотиды существовуют в двух оптических изомерах - L и D. Все без исключения живые организмы для построения своих нуклеотидов используют только D-формы. Присутствие даже малого количества L-формы нуклеотидов ингибирует или полностью блокирует работу ферментов синтеза ДНК.
В ДНК моносахарид представлен 2'-дезоксирибозой, содержащей одну гидроксильную группу, в РНК - рибозой, имеющей две гидро-ксильные группы. Нуклеотиды соединены друг с другом фосфодиэфир-ными связями, при этом фосфатная группа 5'- углеродного атома одного нуклеотида связана с 3’-ОН группой дезоксирибозы соседнего нуклеотида. На одном конце полинуклеотидной цепи находится 3’-ОН группа, на другом 5’-фосфатная группа.
Нативная ДНК состоит из двух полимерных цепей, образующих спираль. Навитые одна на другую полинуклеотидные цепи удерживаются вместе водородными связями, образующимися между комплементарными основаниями противоположных цепей. При этом аденин образует пару только с тимином, гуанин - с цитозином. Пара оснований А-Т стабилизируется двумя водородными связями, пара С-С - тремя. Длина двухцепочечной ДНК обычно измеряется числом пар комплементарных нуклеотидов. Например, ДНК хромосомы 1 человека представляет собой одну двойную спираль длиной 263 миллиона пар нуклеотидов.
Сахарофосфатный состав молекулы, состоящий из фосфатных групп и дезоксирибозных остатков, соединенных 5'—З'-фосфодиэфирными связями, образует «боковины винтовой лестницы», а пары А-Т и С-С - «ее ступеньки». Цепи молекулы ДНК антипаралельны: одна из них имеет направление 3'—5', другая 5'—>3'. Нуклеотиды считают парами потому, что в молекуле ДНК две цепочки и их нуклеотиды соединены попарно поперечными связями.
Носитель генетической информации должен удовлетворять двум требованиям — воспроизводиться (реплицироваться) с высокой точностью и детерминировать (кодировать) синтез белковых молекул. Согласно принципу комплементарности, каждая цепь ДНК может служить матрицей для образования новой комплементарной цепи. Когда клетке необходимо разделиться, непосредственно перед этим она копирует молекулу ДНК в своих рибосомах. При этом две нити ДНК расходятся и на каждой из них, как на матрице, собирается дочерняя нить, в точности повторяющая ту, что была соединена с данной нитью в родительской клетке. В итоге появляются две идентичные дочерние хромосомы, которые при делении распределяются по разным клеткам. Так происходит передача наследственных признаков от родителей потомкам у всех клеточных организмов, имеющих ядро. Следовательно, после каждого раунда репликации образуются две дочерние молекулы, каждая из которых имеет такую же нуклеотидную последовательность, как исходная молекула ДНК. Нуклеотидная последовательность структурного гена однозначно задает аминокислотную последовательность кодируемого ею белка. Следовательно, каждая цепь ДНК служит матрицей при синтезе новой комплементарной цепи, а последовательность оснований в синтезируемой (растущей) цепи задается последовательностью комплементарных оснований цепи-матрицы.
Синтез ДНК у про- и эукариот осуществляется при участии множества различных ферментов. Основную роль играет ДНК-полимераза, которая последовательно присоединяет звенья растущей полинуклеотидной цепи в соответствии с принципом комплементарности и катализирует образование фосфодиэфирных связей.
Для разделения ДНК разработаны специальные гели на основе агарозы (полисахарид, выделяемый из морских водорослей). Предложена модификация гельэлектрофореза в агарозном геле, названная пульс-электрофорез, позволяющая разделять большие молекулы ДНК.
Определены последовательности нуклеотидов генов многих млекопитающих, включая гены, кодирующие гемоглобин, инсулин, цитохром С. Объём информации о ДНК столь велик (многие миллионы нуклеотидов), что для хранения и анализа имеющихся данных необходимы мощные компьютеры.
Для определения того, какие гены активны в данном типе клеток (идентификация специфических последовательностей), используют метод, именуемый ДНК-футпринтинг. Фрагменты ДНК метят Р , затем расщепляют нуклеазами, разделяют на геле и выявляют на радиоавтографе. Если водный раствор ДНК нагреть до 100 °С и сильно защело-чить (рН 13), то комплементарные пары оснований, удерживающие две цепи двойной спирали вместе, разрушаются и ДНК быстро диссоциирует на две цепи. Этот процесс, называемый денатурацией ДНК, ранее считался необратимым. Но если комплементарные цепи ДНК выдержать при температуре 65 °С, они легко спариваются, восстанавливая структуру двойной спирали, - процесс получил название ренатурации.
Подавляющее большинство генов содержит в закодированном виде информацию о синтезе белков. Полипептидам присуща большая универсальность, они состоят из аминокислот с химически разнообразными боковыми цепочками и способны принимать разные пространственные формы, которые насыщены реакционноспособными участками. Свойства полипептидов делают их идеально подходящими для выполнения разнообразных структурных и функциональных задач. Белки участвуют практически во всех процессах, протекающих в живых системах, они служат катализаторами биохимических реакций, осуществляют транспорт внутри и между клетками, регулируют проницаемость клеточных мембран, из них строятся различные структурные элементы. Белки - не только основной строительный материал живого организма, многие из них - ферменты, управляющие процессами в клетке. Белки участвуют в осуществлении двигательных функций, обеспечивают защиту от инфекций и токсинов, регулируют синтез остальных генных продуктов.
Все аминокислоты имеют сходное химическое строение: к центральному атому углерода присоединен атом водорода, аминогруппа, карбоксильная группа и боковая цепь. Существует 20 разных боковых групп и соответственно 20 аминокислот: например, в аминокислоте аланин боковой цепью является метильная группа (табл. 1).
Пептидная связь образуется между карбоксильной группой одной аминокислоты и аминогруппой другой. Первая аминокислота белковой молекулы имеет свободную аминогруппу (N-конец), последняя - свободную карбоксильную группу (С-конец).
Длина белковых молекул варьирует от 40 до 1000 аминокислотных остатков; в зависимости от их последовательности и аминокислотного состава молекулы белков принимают разную форму (конфигурацию, конформацию). Многие функционально активные белки состоят из двух и более полипептидных цепей, как идентичных, так и несколько различающихся. Белки, выполняющие ключевые функции, представляют собой сложные белковые комплексы, состоящие из множества разных полипептидных цепей - субъединиц.
С помощью генетического кода полинуклеотидная последовательность определяет последовательность аминокислот в белке; различные триплеты нуклеотидов кодируют специфические аминокислоты.
Важное «передаточное звено» при переводе генетической информации с языка нуклеотидов на язык аминокислот - РНК (рибонуклеиновые кислоты), которые синтезируются на определенных участках ДНК, как на матрицах, в соответствии с их нуклеотидной последовательностью.
Молекулы РНК несут информацию, они обладают химической индивидуальностью, влияющей на их поведение. Молекула РНК обладает двумя важными свойствами: закодированная в её нуклеотидной последовательности информация передаётся в процессе репликации, а уникальная пространственная структура определяет характер взаимодействия с другими молекулами и реакцию на внешние условия. Оба этих свойства - информационное и функциональное - являются необходимыми предпосылками эволюционного процесса. Нуклеотидная последовательность молекулы РНК аналогична наследственной информации, или генотипу организма. Пространственная укладка аналогична фенотипу - совокупности признаков организма, подверженного действию естественного отбора.
РНК (рис. 5) — линейная полинуклеотидная молекула, отличающаяся от ДНК по двум параметрам:
1. Моносахаридом в РНК является рибоза, содержащая не одну а две гидроксильные группы;
2. Одним из четырех оснований в РНК является урацил, занимающий место тимина.
Существование РНК в виде одной нити обусловлено:
отсутствием у всех клеточных организмов фермента для катализа реакции образования РНК на матрице РНК; такой фермент есть лишь у некоторых вирусов, гены которых «записаны» в виде двухнитчатой РНК, остальные организмы могут синтезировать молекулы РНК только на ДНК-матрице; из-за отсутствия метильной группы у урацила связь между аде-нином и урацилом малоустойчива и «удержание» второй (комплементарной) нити для РНК является проблемным. По причине однонитчатости РНК, в отличие от ДНК, не закручивается в спираль, а образует структуры в виде «шпилек», «петель». Спаривание оснований в молекуле РНК происходит таким же образом, как и в ДНК, за исключением того, что вместо пары А-Т, образуется А-U Комплементарные основания, как и в ДНК, соединены между собой водородными связями.
Существуют три основных типа РНК:
информационная (мРНК);
рибосомная (рРНК);
транспортная (тРНК).
Правильность транскрипции, т.е. ее начало и завершение в нужных сайтах (специфических участках), обеспечивают специфические нук- -леотидные последовательности в ДНК, а также белковые факторы. Транскрипция на ДНК осуществляется в клеточном ядре. Молекулы мРНК переносят информацию из ядра в цитоплазму, где она используется при трансляции белков, аминокислотные последовательности которых закодированы в последовательностях нуклеотидов мРНК (т.е., в конечном счете, в ДНК). мРНК связана с рибосомами, в которых осуществляется соединение аминокислот с образованием белков. Рибосомы - нуклеотидные частицы, в состав которых входит высокополимерная РНК и структурный белок. Биохимическая роль рибосом - синтез белка. Именно на рибосомах происходит соединение отдельных аминокислот в полипептиды, завершающееся образованием белков.
У большинства прокариот транскрипция всех РНК осуществляется с участием одной и той же РНК-полимеразы. У эукариот мРНК, рРНК, тРНК транскрибируются разными РНК-полимеразами.
С генетической точки зрения ген представляет собой специфическую нуклеотидную последовательность, траскрибируемую в РНК. Большинство транскрибируемых последовательностей ДНК составляют структурные гены, на которых синтезируется мРНК. Конечным продуктом структурного гена является белок. У прокариот структурный ген представляет собой непрерывный участок молекулы ДНК. У эукариот большинство структурных генов состоит из нескольких дискретных (отдельных) кодирующих областей — экзонов, разделенных некоди-рующими областями - нитронами. По завершении транскрипции эука-риотического структурного гена интроны вырезаются ферментами из первичного продукта транскрипции, экзоны сшиваются друг с другом «торец в торец» (сплайсинг) с образованием мРНК. Обычно длина экзонов составляет от 150 до 200 нуклеотидов, длина интронов варьирует от 40 до 10000 нуклеотидов.
В активно функционирующей клетке примерно 3-5% суммарной РНК приходится на долю мРНК, 90% — на долю рРНК, 4% — на долю тРНК. мРНК может быть представлена десятками различных типов молекул; рРНК - двумя типами. Более крупная рРНК образует с белками рибонуклеотидный комплекс, называемый большой рибосомной субъединицей. рРНК меньшего размера — комплекс, называемый малой ри-босомальной субъединицей. При синтезе белков субъединицы объединяются с образованием рибосомы. рРНК принадлежит роль главного катализатора в процессе синтеза белка, она составляет более 60% массы рибосомы. В эволюционном аспекте рРНК представляет собой основной компонент рибосомы.
Помимо тысяч рибосом в клетке, активно синтезирующей белки, содержится до 60 различных видов тРНК. тРНК - это линейная одноце-почечная молекула длиной от 75 до 93 нуклеотидов, имеющая несколько взаимно комплементарных участков, спаривающихся между собой. С помощью специфических ферментов (аминоацил-тРНК-синтетаз) к 3'-концу тРНК присоединяется соответствующая аминокислота. Для каждой из 20-ти аминокислот, из которых состоят все белки, существует, по крайней мере, одна специфическая тРНК. На другом конце молекул тРНК расположена последовательность из трех нуклеотидов, называемая антикодоном, она распознает специфический кадок в мРНК и определяет, какая аминокислота будет присоединена к растущей полипептидной цепи.
Трансляция (синтез белка) осуществляется при участии мРНК, разных тРНК, «нагруженных» соответствующими аминокислотами, рибосом и множества белковых факторов, обеспечивающих инициацию, элонгацию, терминацию синтеза полипептидной цепи.
Нуклеотидная последовательность, в которой закодировано более одного белка, называется опероном. Оперон находится под контролем единственного промотора, и при его транскрипции образуется одна длинная молекула мРНК, кодирующая несколько белков.
Синтез мРНК и соответственно синтез белка строго регулируется, так как у клетки недостаточно ресурсов для одновременной транскрипции и трансляции всех структурных генов. Про- и эукариоты постоянно синтезируют только те мРНК, которые необходимы для выполнения основных клеточных функций. Экспрессия остальных структурных генов осуществляется под строгим контролем регуляторных систем, запускающих транскрипцию только в случае возникновения потребности в определенных белках. За включение и выключение транскрипции отвечают дополнительные факторы транскрипции, которые связываются с соответствующими участками ДНК.
При синтезе белковых молекул первичной стадией образования полипептидной цепи белка является процесс активации аминокислот с помощью аденозинтрифосфата. Процесс активации идет при участии ферментов, в результате чего образуются аминоациладенилаты. Затем под действием фермента аминоацил-тРНК-синтетазы (для каждой из 20 аминокислот имеется свой особый фермент) «активированная» аминокислота соединяется с тРНК. Далее комплекс аминоацил-тРНК переносится на рибосомы, где происходит синтез полипептида. Пептидная связь образуется между карбоксильной группой одной аминокислоты и аминогруппой другой. Первая аминокислота белковой молекулы имеет свободную аминогруппу (N-конец), последняя - свободную карбоксильную группу (С-конец).
Сформировавшиеся белки освобождаются из рибосом, а рибосомы после этого могут присоединять новые комплексы аминоацил-тРНК и синтезировать новые белковые молекулы. Рибосомы связаны с мРНК, которая определяет последовательность чередования аминокислот в полипептидных цепочках. Таким образом, целостность и функциональная активность рибосом в клетках - одно из необходимых условий синтеза белковых молекул.
Тест-контроль к главе 3 Выберите правильные ответы:
1. Утверждение «ДНК является хранилищем генетической информации, потому, что ее молекулы в отличие от РНК более стабильны»:
А - верно;
Б - не верно;
В - требует уточнения.
2. Носитель генетической информации должен удовлетворять требованиям:
А — реплицироваться с высокой точностью;
Б - не подвергаться химическому гидролизу;
В - детерминировать синтез белковых молекул;
Г - выступать в качестве переносчика энергии;
Д - образовывать замкнутую кольцеобразную структуру.
3. Для разделения молекул ДНК используют:
А — высаливание;
Б - обратный осмос;
В - пульс-электрофорез;
Г - гельэлектрофорез;
Д - электродиализ.
4. Отличие молеклы РНК от молекулы ДНК:
А - моносахаридом является дезоксирибоза;
Б - моносахаридом является рибоза;
В - азотистое основание - тимин;
Г — азотистое основание — урацил;
Д — азотистое основание — гуанин.
5. Синтез молекулы ДНК осуществляется:
А - ДНК-лигазой;
Б - ДНК-полимеразой;
В — из L-формы нуклеотидов;
Г - из D-формы нуклеотидов;
Д - из смеси D и L-форм нуклеотидов.
6. Сплайсинг:
А — вырезание из предшественника мРНК экзонов и ковалентное соединение интронов с образованием зрелых молекул мРНК;
Б - вырезание из предшественника мРНК интронов и ковалентное соединение экзонов с образованием зрелых молекул мРНК;
В - синтез зрелых молекул тРНК из путем сшивки отдельных нук-леотидов «торец в торец»;
Г — вырезание из предшественника мРНК интронов и их ковалентное соединение с образованием зрелых молекул мРНК;
Д - последовательное ковалентное соединение экзонов и интронов с образованием зрелых молекул мРНК.
7. Ко дон:
А -три соседних нуклеотида мРНК, кодирующих определенную аминокислоту;
Б - три соседних нуклеотида тРНК, комплементарный нуклеотидам специфического кодона в молекуле мРНК;
В -три соседних нуклеотида тРНК, кодирующих определенную аминокислоту;
Г — три соседних нуклеотида тРНК, кодирующих определенную последовательность аминокислот;
Д -три соседних нуклеотида мРНК, кодирующих определенную аминокислоту.
8. Уникальная пространственная структура молекулы РНК определяет:
А - процесс репликации;
Б — генотип;
В — фенотип;
Г - характер взаимодействия с другими молекулами и внешними
условиями; Д - локализацию молекулы РНК.
9. Процессы транскрипции идут:
А - постоянно с одинаковой скоростью;
Б — под контролем регуляторных систем;
В - периодически по мере накопления энергии;
Г — сопряжено с процессами формирования молекул ДНК;
Д -со скоростью, пропорциональной формированию структурных генов.
10. Оперон:
А - участок ДНК, содержащий несколько структурных генов;
Б - участок ДНК, содержащий один структурный ген;
В - нуклеотидная последовательность, кодирующая один белок;
Г - нуклеотидная последовательность, кодирующая более одного
белка;
Д - длинная молекула мРНК, кодирующая несколько белков.
- Глава 1. Общие представления о биотехнологии............ 8
- Глава 5. Общая характеристика биотехнологического процесса.............................................. 43
- Глава 6. Лекарственные средства, полученные
- Глава 7.Антибиотики.......................................................................... 117
- Глава 8. Ферменты. Иммобилизованные ферменты.... 148
- Глава 9.Препаратынормофлоры..................................'.......... 170
- Глава 10. Биопрепараты растительного происхождения................................................................................. 187
- Глава 11. Биодеградация токсических соединений
- Глава 1. Общие представления о биотехнологии
- Глава 4. Технология рекомбинантных днк, или генная инженерия
- Глава 5. Общая характеристика биотехнологического процесса
- 5.1. Состав питательной среды
- 5.2. Приготовление посевного материала
- 5.3. Культивирование
- 5.5. Повышение эффективности ферментации
- 5.6. Методы контроля биомассы и количества клеток при культивировании. Апоптоз и некроз клеток
- 5.7. Выделение продуктов биосинтеза
- 5.8. Получение готовой продукции
- Глава 6. Лекарственные средства, полученные на основе рекомбинантных микроорганизмов
- 6.1. Моиоклональные антитела как лекарственные средства
- 6.3. Аминокислоты
- 6.4. Синтез l-аскорбиновой кислоты
- 6.5. Гормональные препараты
- 6.5.1. Инсулин
- 6.5.2 Сомототропный гормон (стг) или гормон роста человека
- 6.5.3. Эритропоэтин
- 6.6. Вакцины
- Глава 7. Антибиотики
- 7.1. Классификация антибиотиков
- 7.2. Производство антибиотиков
- 7.3. Частная технология антибиотиков
- Глава 8. Ферменты. Иммобилизованные ферменты
- 8.1. Промышленное производство ферментов, получаемых биотехнологическими методами
- 8.2. Иммобилизация как путь повышения эффективности и стабильности
- Глава 9. Препараты нормофлоры
- 9.1. Характеристика нормофлоры человека
- 9.2. Дисбактериоз. Причины возникновения, профилактика
- 9.3. Производство препаратов нормофлоры
- 9.4. Номенклатура препаратов нормофлоры
- Глава 10. Биопрепараты растительного происхождения
- 10.1. Культура изолированных клеток, тканей и органов растений
- 10.2. Особенности культивирования изолированных клеток и тканей растений
- 10.3. Методы культивирования изолированных клеток и тканей Твердофазный способ культивирования. Каллусные культуры
- 10.4. Культура растительных клеток как источник лекарственных веществ
- Глава 11. Биодеградация токсических соединений и утилизация биомассы
- 11.2. Утилизация крахмала и Сахаров
- 11.3. Основные санитарные и экологические требования к производству биопрепаратов
- 001. Возникновение геномики как научной дисциплины стало возможным после:
- 024. Фунгицидность полиенов нистатина и амфотсрицина в обусловлена: