logo search
Методичка Честновой

3.6. Принципы и методы выделения чистых культур. Ферменты бактерий, их идентификация. Внутривидовая идентификация (эпидемиологическое маркирование).

Чистой культурой микробов называют популяцию микроорганизмов одного вида, полученную из изолированной микробной колонии. Под микробной колонией подразумевает­ся потомство бактерий, возникающее в результате размно­жения одной микробной клетки.

Выделение чистой культуры микробов является обяза­тельным этапом всякого бактериологического исследования. Чистая культура необходима для изучения морфологических культуральных, биохимических и антигенных свойств, по со­вокупности которых определяется видовая принадлежность исследуемого микроорганизма.

Для выделения чистых культур микробов из материалов, содержащих обильную смешанную микрофлору, предложено много различных методов. Наибольшее распространение по­лучил метод механического разъединения микроорганизмов, находящихся в исследуемом материале, с целью получения изолированных колоний на поверхности или в глубине пита­тельной среды.

Очень широко применяются элективные питательные сре­ды, стимулирующие развитие тех микроорганизмов, чистую культуру которых предполагается выделить.

При выделении чистой культуры патогенных микробов из патологического материала, загрязненного посторонней мик­рофлорой, прибегают иногда к заражению лабораторных жи­вотных.

При посеве в жидкую питательную среду петлю с находя­щимся на ней материалом погружают в среду. Если матери­ал вязкий и с петли не снимается, его растирают на стенке сосуда, а затем смывают жидкой средой.

При посеве на скошенный мясо-пептонный агар пробирку берут в левую руку между I и II пальцами, чтобы основание пробирки находилось на поверхности кисти руки и посев осуществлялся под контролем глаза. Пробку из пробирки вынимают правой рукой V и IV пальцами, не прикасаясь к той части пробки, которая входит внутрь пробирки. Остальные 3 пальца правой руки остаются свободными для взятия бактериальной петли, посредством которой произво­дится посев. Петлю держат, как писчее перо. После вынима­ния пробки пробирку с питательной средой держат в наклонном положении во избежание попадания в нее посторонних микроорганизмов из воздуха.

Петлю с находящимся на ней пересеваемым материалом вводят в пробирку до дна, опускают плашмя на поверхность питательной среды и скользящими движениями наносят штрих снизу вверх, от одной стенки пробирки к другой.

При посеве на поверхность плотной питательной среды в чашки Петри чашку держат в левой руке. Дно ее с одной стороны придерживают I и II пальцами, а с другой —IV и V пальцами. Крышку, приоткрытую настолько, чтобы в образовавшуюся щель свободно проходили петля или шпатель, фиксируют I и III или I и II пальцами. Небольшое количество исследуемого материала втирают бактериальной петлей в поверхность питательной среды у края чашки. За­тем петлю прожигают, чтобы уничтожить избыток находяще­гося на ней материала. Линию посева начинают с того ме­ста, в котором находится материал. Бактериальную петлю кладут плашмя на питательную среду, чтобы не поцарапать ее поверхности, и проводят штрихи по всей среде. Нужно стараться, чтобы штрихи, наносимые петлей, располагались как можно ближе друг к другу, так как это удлиняет общую линию посева и дает возможность получить изолированные колонии микробов. Для равномерного распределения засеваемого материала по поверхности плотной питательной среды можно пользо­ваться вместо петли тампоном или шпателем.

Посев уколом в столбик питательной среды производят в пробирку со средой, застывшей в виде столбика. Пробирку берут в левую руку, как обычно, и в центре столбика до дна пробирки вкалывают петлю с находящимся на ней материалом.

Для изуче­ния свойств колоний микробы культивируют на плотных пи­тательных средах в чашках Петри. При посеве материала стараются получить изолированный рост колоний. Чашки с посевом просматривают сначала невооруженным глазом или через лупу, затем помещают их на столик микроскопа вверх дном и просматривают колонии в проходящем свете с объ­ективом малого увеличения и с суженной диафрагмой.

Колонии характеризуют по величине, форме, контуру края, рельефу, поверхности, цвету, структуре и консистенции.

Величина колонии определяется ее диаметром, В за­висимости от диаметра различают колонии точечные (диа­метр меньше 1 мм), мелкие (диаметр 1—2 мм), средние (диаметр 2—4 мм) и крупные (диаметр 4—6 мм и более).

Форма колонии бывает правильная — круглая, непра­вильная — амебовидная, ризоидная — корневидная, напоми­нающая переплетающиеся корни деревьев.

Характер контура края определяют при рассмотре­нии колонии под лупой или микроскопом с малым увеличе­нием. Различают ровные края в виде четко выраженной ли­нии и неровные (фестончатый, волнистый, бахромчатый).

Рельеф колонии характеризуется приподнятостью ее над поверхностью питательной среды и контуром формы в вертикальном разрезе. Определяется рельеф колонии нево­оруженным глазом или с лупой при рассматривании сверху и сбоку. Различают (каплеобразные, куполообразные, конусообразные, колонии с вдавленным центром, плоские).

Поверхность коло­ний бывает матовая или блестящая с глянцем, сухая или влажная, гладкая или шероховатая. Гладкие колонии обозна­чают буквой S (smooth), шероховатые — буквой R (rough), что означает соответственно «гладкий» и «шероховатый». Переход S-форм в R-формы наблюдается при диссо­циации. Явление диссоциации у патогенных микробов на­блюдается под действием антибиотико- и химиотерапии, фак­торов специфического иммунитета, формирующихся в течение инфекционного процесса, а также при попадании микроба во внешнюю среду.

Цвет колонии определяется пигментом, который проду­цирует культура микробов. Преобладающее большинство патогенных бактерий пигмента не образует, вследствие чего колонии их бесцветны или молочно-мутного цвета, похожи на опал. В проходящем свете такие колонии в большей или меньшей степени прозрачны. Пигментообразующие виды мик­робов дают колонии различных цветов: кремовые, желтые, золотисто-оранжевые, синие, красные, сиреневые, черные и др.

Структура колоний определяется в проходящем све­те при слабом увеличении микроскопа.

По характеру структуры различают следующие виды ко­лоний:

  1. гиалиновые — бесцветные, прозрачные, без видимой определенной структуры;

  2. зернистые;

  3. нитевидные или волокнистые, характеризующиеся на­личием длинных, густо переплетающихся нитей в толще колонии.

Консистенцию колонии исследуют посредством прикосновения или взятия из нее части материала бактериальной петлей.

По характеру консистенции колонии бывают:

  1. пастообразные, легко снимающиеся и размывающиеся по поверхности питательной среды наподобие сливочного масла;

  2. вязкие или слизистые, прилипающие и тянущиеся за петлей;

  3. волокнистые или кожистые, плотные, снимающиеся с поверхности питательной среды в виде упругой пленки, соот­ветствующей величине и форме колонии;

  4. хрупкие, сухие, рассыпающиеся при прикосновении петли.

На жидких питательных средах характер роста мик­робов менее разнообразен, чем на плотных питательных средах. Однако и здесь выявлены следующие формы роста бак­терий.

  1. Рост бактерий с равномерным помутнением среды

  2. Придонный рост бактерий характеризуется обра­зованием осадка на дне пробирки с жидкой питательной сре­дой. Осадок может быть скудным или обильным, крошковидным, гомогенным, волокнистым или в виде крупных рыхлых хлопьев.

  3. Пристеночный рост бактерий выражается в том, что питательная среда, находящаяся в пробирке, остается совершенно прозрачной. Бактерии растут, образуя более или менее крупные рыхлые хлопья к внутренней поверхности стенок сосуда.

  4. Поверхностный рост бактерий характеризуется появлением на поверхности жидкой питательной среды пленки.

Рост на полужидкой питательной среде. Для выявления особенностей микробного роста на полужидкой питательной среде исследуемую культуру засевают в столбик 0,2—0,5% полужидкого агара.

Подвижные микробы в столбике полужидкого агара вы­зывают выраженное помутнение, распространяющееся более или менее равномерно по всей толщине среды.

Неподвижные формы микробов растут только по ходу прокола среды.

Ферменты бактерий принадлежат к 6 классам: оксиредуктазы, трансферазы, гидролазы, лигазы, лиазы, изомеразы. Также они подразделяются на экзоферменты - ферменты, которые выделяются в окружающую среду и эндоферменты – ферменты, которые образуются бактериальной клеткой и локализуются внутри нее.

Сахаролитические ферменты микробов расщеп­ляют углеводы и высокоатомные спирты, которые принято объединять в одну группу, именуемую сахарами, присуще многим патогенным микробам. Под действием сахаролитических ферментов бактерий сахара расщепляются на альдегиды и кислоты. Конечными продуктами их расщепления явля­ются газообразные вещества: СО2 и Н2.

Характерно, что различные виды и даже разновидности микробов относятся по-разному к одним и тем же сахарам. Так, например, одни бактерии, ферментируя лактозу, оста­ются нейтральными в отношении глюкозы, другие, наоборот, сбраживают глюкозу, а третьи, наиболее активные, вызыва­ют расщепление и глюкозы, и лактозы.

Для обнаружения сахаролитических ферментов исследуе­мую культуру бактерий засевают в питательные среды Гисса, называемые также «пестрым» рядом. Название «пестрый» ряд обусловлено тем, что под дей­ствием ферментов микроба одни углеводы остаются неизменными и, следовательно, цвет питательной среды не меняетя, в то время как другие сахара расщепляются, образуя кислые продукты распада, которые изменяют цвет индикатора и соответственно цвет питательной среды. Среды Гиса бывают жидкими и полужидкими. В пробирки с жидкими средами Гиса для обнаружения газов, являющихся конечными продуктами распада сахаров, опускают «поплавок» - труппочку диаметром 0,5-0,7 см, запаянную с одного конца. «Поплавок» помещают запаянным концом кверху. При образовании в среде газообразных продуктов они вытесняют часть жидкости, находящейся в «поплавке», вследствие чего у запаянного конца его собирается воздушный пузырек. В полужидких средах Гиса газообразование определяют по наличию мелких пузырьков газа в толще среды и стойкой пены на ее поверхности.Пробирки с набором сред Гисса ставят в штатив в один ряд. На каждой пробирке надписывают название сахара, со­держащегося в среде. На первой пробирке каждого ряда, кроме названия сахара, указывают номер или вид исследуе­мой микробной культуры. Культуру берут на кончик петли в очень небольшом количестве и засевают по общепринятой методике.

Таким образом, при изучении сахаролитических ферментов, выделяемых микробами, учитывают не только явления расщепления тех или иных сахаров по кислотообразованию, но и глубину ферментативного процесса по наличию в питательной среде конечных газообразных продуктов.

Протеолитические ферменты микробов. Для выявления протеолитических ферментов исследуемую культуру микроба засевают в питательную среду, содержа­щую тот или иной белок. Чаще всего для этой цели приме­няют желатин, реже — свернутую лошадиную сыворотку, коа­гулированный яичный белок, молоко или кусочки вареного мяса. Протеолитически активные культуры микробов, например под действием фермента желатиназы разжижают желатин. Некоторые виды патогенных микробов обладают способностью расщеплять белок и пептон до продуктов глубокого распада: индола, сероводорода, мочевины, аммиака.

Определение индола в культуре микроор­ганизмов. Индол образуется при расщеплении сложной гетероциклической кислоты — триптофана. Для выявления индолообразования петлю исследуемой культуры засевают в нейтральный бульон. Тотчас после посева в пробирку вносят полоску индикаторной бумаги, пропитанную раствором щавелевой кислоты, так, чтобы индикаторная бумага не касалась питательной среды. Для этого верхнюю треть бумажной полоски прижимают пробкой к стенке пробирки. Посевы инкубируют 24—48 ч при темпера­туре 37 °С. Образование индола определяют по окрашиванию нижнего конца индикаторной бумаги в бледно-розовый цвет, хорошо заметный в проходящем свете.

Определение сероводорода. Сероводород яв­ляется конечным продуктом расщепления аминокислот: цистина, цистеина и метионина, содержащих серу. Образование сероводорода хорошо заметно на трехсахарной питательной среде Клиглера или Олькеницкого в виде черного цвета.

Окислительно-восстановительные ферменты. В культуре микробов могут быть обнаружены окисли­тельно-восстановительные ферменты, связанные главным об­разом с дыхательной функцией микроорганизма (оксидаз и дегидраз).

Определение фермента каталазы. Некоторые виды микроорганизмов, принадлежащие к группе аэробов, в процессе дыхания образуют перекись водорода, являющую­ся клеточным ядом. Количество перекиси водорода в культуре никогда не достигает высоких концентраций, так как по ме­ре образования перекись расщепляется на воду и молекуляр­ный кислород при участии фермента каталазы. На поверх­ность микробной культуры, выращенной на плотной пита­тельной среде в чашке Петри, наносят 1—2 мл 1% раствора перекиси водорода так, чтобы она покрывала поверхность культуры тонким слоем. Появление пузырьков газа в слое, нанесенной жидкости свидетельствует об образовании кислорода в результате расщепления перекиси водорода под действием каталазы. Подобный результат отмечается как положительный результат реакции на каталазу.