14.14.1. Функциональные и морфологические изменения, трансплантата 6 мозгу реципиента
Основная особенность, позволяющая трансплантату сохраняться и развиваться в мозгу реципиента, заключается в способности его тканей к регенерации и дифференциации.
После пересадки трансплантат увеличивает свои размеры, этот рост происходит активно в первые два месяца, затем размеры относительно стабилизируются. Чем моложе ткань трансплантата, тем больших размеров она достигает по мере развития в ткани реципиента. Пересаженная нервная ткань приживляется, растет, дифференцируется и сохраняется в течение всей жизни реципиента.
Нейроны трансплантата устанавливают эфферентные и афферентные связи с нейронами реципиента, эти связи могут быть специфическими и неспецифическими.
Наиболее оптимально производить пересадку тогда, когда развитие эмбриона достигает уровня детерминированности тканей. В этом случае развитие трансплан-
тата идет по пути формирования структуры, соответствующей ее происхождению, а не месту пересадки.
Следовательно, из эмбриональной ткани коры, пересаженной в мозжечок, растет ткань коры, а не мозжечка. Точно так же из ткани мозжечка, пересаженной в кору, возникают структуры мозжечка и специфичная для него морфология.
Трансплантат дифференцируется, сохраняет свои функции и биохимические свойства. Так, после пересадки эмбриональная закладка септума, как и в нормально развивающемся организме, синтезирует аце-тилхолин, а закладка ядер шва серотонин. В трансплантатах выявляются специфические для них медиаторы, белки, ферменты. В то же время известно, что ткани реципиента могут оказывать влияние на химизм прорастающих к ним нейронов.
Зачатки мозжечка, пересаженные в мозжечок другого животного, развиваются в нормальный, но малых размеров:второй мозжечок.
Пересаженная структура, независимо от метода пересадки, даже в случае ее дезагригирования, воссоздает свою типовую архитектонику независимо от места трансплантации. Имеются структуры, которые нормально развиваются при пересадке их эмбриональной ткани в любую структуру мозга, например, черная субстанция. Моноаминергические и холинерги-ческие клетки трансплантатов устанавливают контакты с нейронами независимо от области трансплантации. В то же время неостриатум развивается только при пересадке его в неостриатум.
Пересаженная ткань сохраняет типичную для себя ультраструктуру, форму синаптических контактов, позволяющую устанавливать нормальные связи.
Таким образом, трансплантированная нервная ткань, независимо от специфической для нее сенсор-
ной и другой информации, способна дифференцироваться и воссоздавать структуру, присущую первоначально эмбриональной ткани, из которой она была взята.
Между трансплантированной тканью и тканями мозга реципиента устанавливаются морфологические связи. Связи характеризуются тем, что они могут быть специфическими, неспецифическими, афферентными или эфферентными. Эти связи резко усиливаются при частичной денервации или повреждении окружающих трансплантат структур.
При пересадке септума от эмбрионов крыс в гиппо-камп, лишенный холинергической иннервации, эта иннервация восстанавливается за счет трансплантата.
Трансплантат не только восстанавливает нарушенную иннервацию зоны своей проекции, но и сам получает иннервацию от окружающей ткани. Так, при пересадке покрышки мозга в верхние или нижние холмы среднего мозга, в трансплантат прорастали нервные волокна от холмов и распределялись здесь по типичному для холмов рисунку.
14.14.2. Функциональные связи между трансплантатом и тканями мозга реципиента
Нейроны трансплантата реагируют на антидромное раздражение аксонов в месте их проекции в тканях реципиента. Нейроны пересаженной эмбриональной ткани имеют фоновую спонтанную активность с теми же характеристиками, что и нейроны этой же, но нетрансплантированной ткани. Нейроны трансплантата коры в одноименную кору отвечают на стимуляцию ядер таламуса точно так же, как и соседние с трансплантатом нейроны. Если стимулировать нейроны трансплантата в коре, то нейроны других областей мозга и симметричных пунктов коры реагируют
на эту стимуляцию так же, как они реагируют на стимуляцию интактных областей коры.
Важно то, что все трансплантаты сохраняют свои свойства независимо от места трансплантации. Так, стимуляция септального трансплантата вызывает в гиппокампе реципиента холинергический эффект, как это имеет место в норме. Даже если участок эмбриональной нервной ткани, принадлежащий сетчатке глаза, пересажен в мозжечок, то его стимуляция вызывает реакцию нейронов двухолмия с ЛП 8-12 мс. В то же время сам пересаженный участок сетчатки при ее освещении реагировал на раздражение подобно ин-тактной сетчатке.
14.14.3. Совместимость тканей трансплантата и реципиента
Нервная ткань обладает свойствами сильного антигена. В то же время нервная ткань головного мозга, передняя камера глаза, семенники, костный мозг в определенной степени защищены от иммунной системы организма. Иммунная защищенность головного мозга обусловлена тем, что гематоэнцефалический барьер препятствует клеточной иммунной реакции.
Возможно, что отсутствие иммунной реакции мозга при трансплантации обусловлено тем, что эмбриональная ткань еще не сформировала антигены гистосовме-стимости, т.е. отсутствие иммунной реакции реципиента обусловлено отсутствием антигенов в трансплантате. Нужно отметить также, что эмбриональная ткань имеет высокую резистентность к различного рода воздействиям, в частности к лишению кислорода.
Сразу после пересадки эмбриональной ткани нарушается гематоэнцефалический барьер, что может привести к разрушению трансплантата. Однако в это вре-
мя еще действует его собственная резистентность к вредящим воздействиям.
По мере снижения резистентности пересаженного трансплантата восстанавливается гематоэнцефаличес-кий барьер реципиента, что, естественно, дает возможность пересаженной ткани приживляться в новой структуре.
- Следовательно, успешная трансплантация обеспечивается двумя механизмами. Первый заключается в том, что головной мозг является иммунологически привилегированной структурой (как и семенники, костный мозг). Иммунологическая привилегированность означает, что мозг защищен гематоэнцефалическим барьером от иммунных сил организма.
Второй механизм обусловлен тем, что для пересадки берется эмбриональная ткань, не обладающая еще антигенными свойствами взрослого мозга. Она состоит из незрелых клеток и их предшественников. Эти клетки обладают гликолизом, т.е. не требуют аэробного дыхания. Последнее обеспечивает пересаживаемую нервную ткань более устойчивой к лишению кислорода при пересадке на время прорастания в нее сосудов и обеспечения ее кислородом.
Следовательно, повреждение гематоэнцефалическо-го барьера, неизбежное при пересадке, мало сказывается на трансплантате, так как он состоит из еще незрелой ткани и не проявляет антигенных свойств. Когда же трансплантат полностью дифференцируется, то к этому времени гематоэнцефалический барьер уже оказывается восстановленным.
Иммунологическая привилегированность головного мозга, лежит в основе возможности не только алло-, но и ксенотрансплантации. Вследствие этого возможна трансплантация от животных разного вида.
14.14.4. Трофические факторы сохранения трансплантата
Центральной нервной системе присуща нейротро-фическая функция. Каждый из отделов мозга выделяет свои нейротрофические вещества, которые представляют собой белки или различные пептиды.
Эти трофические вещества регулируют синтез ДНК, РНК, белка, митотическое деление клеток разных тканей, процессы роста и дифференцировки, жизнедеятельности тканей. Наличие нейротрофических веществ вокруг трансплантата облегчает процесс его приживления.
Вживление трансплантата провоцирует активацию нейротрофических факторов, которые стимулируют рост и дифференцировку трансплантированной ткани.
Трофическая реакция нервной ткани не является специфичной и возникает независимо от места вживления. По-видимому, для переживания пересаженной эмбриональной ткани требуется нейротрофический фактор, который представлен химическими веществами, синтезирующимися в клетках места вживления трансплантата. По химической природе это пептиды, возникающие после повреждения нервной ткани, накапливающиеся в области повреждения, в спинномозговой жидкости, в крови объекта и синтезирующиеся в клетках глии.
Нейроны головного мозга усиливают активность роста своего аксона, если в мозг при пересадке попадают швановские клетки, глия трансплантата.
14.14.5. Восстановление функций структур мозга при трансплантации
Наиболее разработан и известен опыт использования метода трансплантации для восстановления функции черного вещества мозга.
Стриопаллидарная система мозга имеет ряд функций, среди которых — регуляция тонуса мускулатуры для обеспечения произвольных движений. Нарушения регуляции тонуса мускулатуры происходят в результате недостаточности дофамина, образующегося в черной субстанции и транспортируемого отсюда в стриопаллидарную систему.
В результате недостаточности секреции дофамина нейронами черной субстанции и транспорта его в полосатые тела возникает синдром паркинсонизма: тремор, ригидность, затруднения начала движений и т.д. Трансплантация эмбрионального участка черной субстанции по месту ее локализации или на дорсальную поверхность полосатого тела приводит к восстановлению связей черной субстанции с полосатым телом.
Пересаженная черная субстанция продуцирует дофамин, который подается в неостриатум, что приводит к восстановлению нарушенных двигательных функций.
У крыс при пересадке им эмбриональной нервной ткани закладки черной субстанции в область хвостатого ядра, после повреждения нигро-стриарных путей, наблюдали врастание в хвостатое ядро катехола-миновых волокон, восстановление двигательных нарушений, нормализацию поведения изменившихся в результате повреждения нигро-стриарных путей.
Пересадка эмбриональной ткани черной субстанции приводит к восстановлению концентрации дофамина в хвостатом ядре до 13-14% нормы, что вполне достаточно, так как уже 3% концентрации дофамина обеспечивает нормальную двигательную функцию неостриа-тума.
Трансплантация крысам с поврежденными и стрио-нигральными связями эмбриональной ткани черной субстанции в дорсальную область хвостатого ядра ус-
траняла двигательные нарушения, а трансплантация в вентральную область восстанавливала соматосенсор-ную функцию.
Компенсация нарушений двигательных функций при паркинсонизме у человека возможна не только в результате трансплантации черной субстанции, но и при аутотрансплантации хроматиновых клеток надпочечников в хвостатое ядро.
14.14.6. Восстановление функций спинного мозга
Повреждения и нарастающие сдавления спинного мозга, в зависимости от уровня локализации патологии, вызывают парезы и параличи движений, нарушения функций органов таза, регуляции дыхания.
Естественной регенерации поврежденного спинного мозга у высших млекопитающих не происходит, хотя некоторые клиницисты считают, что регенерация могла бы развиться, но ей мешают рубцовые изменения в месте травмы.
Оказалось, что трансплантация в место повреждения спинного мозга эмбриональной нервной ткани препятствует образованию рубца.
Пересадка в место повреждения спинного мозга симпатического ганглия с сохранением его межганглио-нарных связей показала, что вокруг трансплантата усиливается регенерация интраспинальных волокон, возрастает дифференцировка синапсов, улучшается васкуляризация поврежденного сегмента, ограничивается образование рубцовой ткани. Однако полного восстановления нарушенных функций не происходит.
Исследования возможности восстановления спинного мозга методом трансплантации эмбриональной ткани свидетельствуют, что наиболее успешно восстановление функции поврежденного спинного мозга происходит при пересадке в него эмбриональной тка-
ни голубого пятна или других холинергических структур. Как правило, такие трансплантаты без рубцов сливались с тканью реципиента, аксоны их нейронов внедрялись в ткани хозяина, нейроны спинного мозга прорастали в трансплантат своими аксонами.
Трансплантаты самых различных участков головного мозга эмбрионов на спинной мозг крыс или в область рассеченного спинного мозга хорошо приживаются, аксоны их клеток прорастают в спинной мозг. Трансплантат заполняет область дефекта спинного мозга и служит местом для роста через него перерезанных проводников спинного мозга. Такой подход лечения повреждений спинного мозга в настоящее время является единственно обнадеживающим.
14.14.7. Восстановление способности к обучению
Повреждение гиппокампа у животных вызывает нарушения краткосрочной памяти, двигательную гиперактивность.
В гиппокампе заканчиваются холинергические волокна из септума, голубого пятна, шва моста. Повреждение этих входов в гиппокамп нарушает поступление в него ацетилхолина, серотонина, это приводит к ослаблению или полной утрате способности к обучению ориентировочному поведению в лабиринте.
Пересадка эмбриональной ткани септума в гиппокамп с поврежденными холинергическими входами приводила к тому, что способность к обучению восстанавливалась, двигательная гиперактивность уменьшалась.
Особенно хорошо восстанавливалась двигательная активность после пересадки в гиппокамп эмбрионального голубого пятна. Вживление эмбрионального септума старым животным с затруднениями условнорефлектор-ного обучения улучшало у них способность к обучению.
В экспериментах с введением нейротоксина в нео-кортекс, снижающего уровень норадреналина и исследовательской активности животных, трансплантация таким животным эмбриональной ткани голубого пятна повышала уровень норадреналина и восстанавливала поведенческие реакции.
Вживление эмбриональной ткани лобно-теменной области животным с поврежденными затылочными областями мозга компенсировало у них зрительную функцию, однако трансплантация таким животным эмбриональной затылочной коры не восстанавливала зрения. В случаях повреждения лобной коры возникают грубые изменения познавательной способности. Пересадка таким животным эмбриональной ткани лобной области мозга восстанавливала познавательную способность. При этом между тканями трансплантата и мозгом реципиента устанавливались прямые связи.
- Г. А. Кураев
- Ростов-на-Дону «Феникс»
- 1. Методы изучения физиологии центральной нервной системы
- 1.1. Аналитические методы
- 1.2. Нейрокибернетические методы
- 1.3. Нейропсихологииеские методы
- 2.1. Физиология нейрона.
- 2.3. Синапс
- 2,4. Нейроглия
- 3.2. Свойства нервных центров
- 3.3. Кодирование информации в нервной системе
- 4. Спинной мозг
- 4.1. Морфофункциональная организация
- 4.3. Электрическая активность
- 4.4. Возбудительно-тормозные отношения в спинном мозгу
- 4.5. Спинальные рефлексы
- 5. Ствол мозга
- 5.1. Продолговатый мозг
- 5.3. Промежуточный мозг
- 5.3.1. Таламус
- 5.3.2. Гипоталамус
- 6.1. Анатомия стриопаллидарной системы
- 6.2. Функции ядер стриопаллидарной системы
- 6.3. Хвостатое ядро
- 6.4. Скорлупа
- 6.5. Функции палеостриатума
- 6.6. Ограда
- 7. Архипалеокортекс
- 7.1. Морфофункциональная организация старой и древней коры мозга
- 8. Новая кора больших полушарий головного мозга
- 8.1. Структура и эволюция новой коры
- 8.2. Организация нейронных систем
- 8.3. Электрическая активность коры
- 8.4. Локализация функций в коре
- 9.1. Общие принципы организации двигательных функций
- 9.3. Стволовой уровень регуляции моторных функций
- 9.5. Вязальные ганглии и регуляция моторных функций
- 9.6. Корковый уровень регуляции моторных функций
- 10. Принципы организации сенсорных функций
- 10.1. Некоторые общие закономерности функционирования сенсорных систем
- 10.2. Трансформация информационных потоков в звеньях сенсорных систем
- 11. Принципы регуляции вегетативных функций
- 11.1. Особенности организации влияния вегетативной нервной системы на организм
- 11.4. Гипоталамус
- 11.5. Средний мозг
- 11.6. Лимбический мозг
- 11.7. Таламус
- 11.8. Мозжечок
- 11.9. Подкорковые узлы
- 11.10. Кора мозга
- 12. Саморегуляция функционального состояния головного мозга
- 13. Функциональная межполушарная асимметрия мозга
- 14.1. Компенсация нарушений функций в центральной нервной системе. Общие закономерности
- 14.2. Свойства центральной нервной системы, обеспечивающие механизмы компенсации нарушенных функций
- 14.4. Этапы компенсации
- 14.5. Способы компенсации нарушений функций структур нервной системы
- 14.6. Компенсация генетически обусловленных
- 14.8. Межполушарное взаимодействие при компенсации нарушенных функций
- 14.10. Компенсаторные процессы,
- 14.11. Гемодинамические механизмы
- 14.13. Нейрогуморальные механизмы компенсации функций нервной системы
- 14.14.1. Функциональные и морфологические изменения, трансплантата 6 мозгу реципиента
- 14.14.8. Восстановление генных нарушений функций
- Эмбриональной ткани
- 15. Компенсаторные процессы в вегетативной нервной системе
- 376 Физиология центральной нервной системы
- Оглавление
- 1. Методы изучения физиологии
- 2. Основы физиологии нейрона,
- 3. Общие свойства нервной системы 30
- 5. Ствол мозга 63
- 15. Компенсаторные процессы в вегетативной нервной