14.11. Гемодинамические механизмы
компенсации нарушенных функций структур
нервной системы
Через мозг проходит одна пятая часть крови, выбрасываемой сердцем, мозг потребляет одну пятую часть кислорода, попадаемого в организм в покое. В связи с этим любые изменения мозгового кровообращения сказываются на функционировании мозга.
Сенсорная активация мозга изменяет характер кровотока отдельных его структур, двигательная активность, помимо неспецифической реакции сосудов мозга, вызывает перестройки кровотока в моторных областях мозга. В динамике умственной деятельности: в период врабатываемости, период оптимальной работоспособности, при утомлении, монотонии, при текущей коррекции утомления, в условиях посттрудовой реабилитации — кровоснабжение мозга существенно меняется, оптимизируя кровоток в наиболее нагруженных структурах головного мозга.
Корреляция сосудистого тока крови в мозгу при различных нагрузках на его структуры осуществляется на уровне пиальных сосудов. Именно пиальные сосуды образуют сеть коллатерального кровообращения, обеспечивая надежность притока крови к отдельным структурам мозга.
Пиальные артериолы, являясь «краниками» сосудистого русла, обеспечивают нужный объем кровотока к данному образованию мозга. Регуляция пиальных артериол в значительной мере осуществляется по биообратной связи от структуры, которая обеспечивается кровью бассейна данного пиального сосуда.
Эти изменения в пиальном кровотоке не зависят от величины системного артериального давления, т.е. они связаны только с повышением функциональной активности соответствующей области мозга. Унила-
теральная подача зрительного или слухового сигнала увеличивает сосудистый кровоток в полушарии, кон-тралатеральном относительно стимуляции.
Анализ компенсаторных процессов сосудистого кровотока в ассоциативных и проекционных зонах коры наиболее удобно исследовать при изменении функционирования их симметричных областей мозга. Известно, что при деструкции или ишемии одной из симметричных областей мозга другая принимает участие в компенсации дефицита, возникающего в результате возникшей патологии.
Эксперименты на животных, у которых под наркозом функционально выключали теменную или со-матосенсорную зону коры левого полушария и одновременно контролировали сосудистое русло пиальной системы над симметричными областями мозга, показали следующее.
В симметричных областях реакция на функциональное выключение активности одного полушария (гемодинамические изменения) протекает в две фазы. В первую фазу, которая длится до 15 минут, кровоток снижается. Затем наступает вторая фаза, в течение которой кровоток восстанавливается и постепенно усиливается сравнительно с нормой. Причем усиление кровотока происходит не только в симметричной выключению соматосенсорной коре, но и в теменной коре противоположного полушария.
Принципиально такая же картина усиления кровотока наблюдается и в исследованиях на бодрствующих животных. Отличием является только то, что при функциональном выключении области коры одного полушария изменения гемодинамики в первую фазу — снижения кровотока — длились меньше и продолжались не более 10 минут, затем начиналось восстановление кровотока и его усиление сравнительно с нормой.
Гемодинамика соматосенсорной коры, симметричного пункта относительно выключенного, по сравнению с гемодинамикой теменной коры, изменялась более динамично, восстановление сосудистого русла происходило более быстро и гиперактивность его продолжалась более короткое время. Инертность изменений гемодинамики в ассоциативных областях, длительное сохранение изменений в них свидетельствуют, что именно эти области играют решающую роль в обеспечении компенсации нарушенных функций в структурах центральной нервной системы.
14.12. Биообратная связь в компенсации нарушений функций нервной системы
Активация естественных резервов организма с помощью биологической обратной связи является распространенным механизмом компенсации нарушений функций центральной нервной системы.
Биоуправление с обратной связью представляет собой форму обучения, позволяющую реализовывать непроизвольные функции на основе наблюдения за результатами своей деятельности.
Пример использования биообратной связи приводит Н. Миллер (1977). Он рассказывает о спортсмене-баскетболисте, который перестраивает свои движения в соответствии с удачей или неудачей попадания мяча в кольцо. Обратной связью является результат, наблюдаемый визуально. При удачном результате автоматически запоминаются поза, мышечное напряжение, сила толчка и проч., которые в последующем используются при повторном броске неосознанно.
Биообратная связь часто используется в психологии для регулирования определенного психического состояния на основе регистрации и предъявления испытуемым уровня выраженности альфа-ритма в активности коры мозга.
В клинике биообратная связь используется для управления активностью мозга, мышц, температуры, частоты сердечных сокращений, частоты и глубины дыхания, уровня кровяного давления, для лечения бронхиальной астмы, гипертонической болезни, бессонницы, заикания, состояния беспокойства после мозгового инсульта, эпилепсии и др.
Компенсация с помощью биообратной связи является обучением человека новому виду деятельности, который произвольно не контролируется.
Принципиальная схема выработки компенсации на основе биообратной связи на примере эпилепсии выглядит следующим образом.
Как известно, эпилепсия сопровождается специфическим характером электроэнцефалограммы с особыми признаками в виде высокоамплитудного негативного колебания, сразу после которого возникает низкоамплитудная медленная волна — «пик-волна».
Больной располагается в удобном кресле для регистрации ЭЭГ. Ему накладываются электроды, и активность, отводимая от определенных областей мозга, демонстрируется больному на мониторе. Объясняется, что для данной болезни характерна активность в виде «пик-волны» в ЭЭГ, что большая часть таких колебаний остается за пределами видимости на экране, но она регистрируется с помощью ЭВМ и о ее наличии свидетельствует появление на экране монитора зеленой полосы: чем больше выражена пик-волновая активность, тем шире зеленая полоса. Задачей больного является нахождение такого состояния, при котором зеленая полоса имеет минимальную широту, т.е. количество пик-волновой активности минимизируется или она не возникает вовсе.
В результате обучения у больных, ранее не имевших ауры, она появлялась, т.е. вырабатывалась спо-
собность чувствовать предвестники приступа, наблюдалось более медленное наступление пароксизмаль-ного приступа, фаза потери сознания при наступлении приступа укорачивалась, часто не развивалась по-слеприступная амнезия. У некоторых больных большие судорожные припадки заменялись малыми, локальными, абортивными. В ряде случаев отмечалось прекращение или урежение частоты появления судорожных припадков сроком от двух недель до года.
В результате обучения больной при появлении ауры пользовался приемами предотвращения приступов, как это он делал во время обучения, уменьшая количество пароксизмальных пик-волновых разрядов.
В ЭЭГ после обучения подавления пик-волновой активности с помощью биообратной связи встречаемость пароксизмальной активности уменьшалась.
Таким образом, в динамике лечения при помощи биообратной связи формировалось новое функциональное состояние мозга, препятствующее развитию пароксизмальной активности. Это функциональное состояние фиксируется в долговременной памяти.
Достаточно успешно биообратная связь может быть использована для компенсации нарушений двигательных функций, дискинезий разной этиологии.
Дискинезии могут характеризоваться избыточностью или недостаточностью.
Избыточные дискинезии вызывают внимание окружающих, что травмирует психику больного, вызывает отрицательные эмоциональные реакции и приводит к усилению дискинезий — положительная биообратная связь, приводящая в данном случае к ухудшению состояния больного.
Лечение дискинезий лекарственными препаратами делает больного фармакозависимым. Хирургичес-
кое лечение стереотаксическим способом имеет неблагоприятные отдаленные последствия.
Из дискинезий в форме гиперкинезов наиболее успешно применение биообратной связи для целей компенсации при паркинсонизме и писчем спазме.
Паркинсонизм возникает в результате нарушения функций паллидо-нигро-ретикулярных структур, что приводит к нарушению механизмов саморегуляции и обратной связи между подкорковыми и корковыми структурами экстрапирамидной системы. В то же время паркинсоническая симптоматика подвержена суточному ритму и на нее влияет эмоциональное состояние больного, следовательно, она зависит от функционального состояния мозга, т.е. может быть управляема.
Писчий спазм появляется у лиц определенной профессии и приводит к нарушению профессиональной деятельности, а это, в свою очередь, к эмоциональным отрицательным реакциям. Последнее не может не сказаться на усилении заболевания.
Компенсация дискинезий, возникающих при этих видах патологии, с помощью лечения методом биообратной связи, выражается в снижении тремора, улучшении качества и скорости письма. Тремор из регулярного вначале становился «пачечным», затем появлялись короткие периоды полного прекращения тремора.
Биообратная связь может быть использована для компенсации функций центральной нервной системы при неврозах различного вида, при нарушениях функционального состояния мозга, возникающих при умственном переутомлении или с целью повышения отдельных функций, таких, как внимание, скорость сигнально-моторных реакций и т.д.
- Г. А. Кураев
- Ростов-на-Дону «Феникс»
- 1. Методы изучения физиологии центральной нервной системы
- 1.1. Аналитические методы
- 1.2. Нейрокибернетические методы
- 1.3. Нейропсихологииеские методы
- 2.1. Физиология нейрона.
- 2.3. Синапс
- 2,4. Нейроглия
- 3.2. Свойства нервных центров
- 3.3. Кодирование информации в нервной системе
- 4. Спинной мозг
- 4.1. Морфофункциональная организация
- 4.3. Электрическая активность
- 4.4. Возбудительно-тормозные отношения в спинном мозгу
- 4.5. Спинальные рефлексы
- 5. Ствол мозга
- 5.1. Продолговатый мозг
- 5.3. Промежуточный мозг
- 5.3.1. Таламус
- 5.3.2. Гипоталамус
- 6.1. Анатомия стриопаллидарной системы
- 6.2. Функции ядер стриопаллидарной системы
- 6.3. Хвостатое ядро
- 6.4. Скорлупа
- 6.5. Функции палеостриатума
- 6.6. Ограда
- 7. Архипалеокортекс
- 7.1. Морфофункциональная организация старой и древней коры мозга
- 8. Новая кора больших полушарий головного мозга
- 8.1. Структура и эволюция новой коры
- 8.2. Организация нейронных систем
- 8.3. Электрическая активность коры
- 8.4. Локализация функций в коре
- 9.1. Общие принципы организации двигательных функций
- 9.3. Стволовой уровень регуляции моторных функций
- 9.5. Вязальные ганглии и регуляция моторных функций
- 9.6. Корковый уровень регуляции моторных функций
- 10. Принципы организации сенсорных функций
- 10.1. Некоторые общие закономерности функционирования сенсорных систем
- 10.2. Трансформация информационных потоков в звеньях сенсорных систем
- 11. Принципы регуляции вегетативных функций
- 11.1. Особенности организации влияния вегетативной нервной системы на организм
- 11.4. Гипоталамус
- 11.5. Средний мозг
- 11.6. Лимбический мозг
- 11.7. Таламус
- 11.8. Мозжечок
- 11.9. Подкорковые узлы
- 11.10. Кора мозга
- 12. Саморегуляция функционального состояния головного мозга
- 13. Функциональная межполушарная асимметрия мозга
- 14.1. Компенсация нарушений функций в центральной нервной системе. Общие закономерности
- 14.2. Свойства центральной нервной системы, обеспечивающие механизмы компенсации нарушенных функций
- 14.4. Этапы компенсации
- 14.5. Способы компенсации нарушений функций структур нервной системы
- 14.6. Компенсация генетически обусловленных
- 14.8. Межполушарное взаимодействие при компенсации нарушенных функций
- 14.10. Компенсаторные процессы,
- 14.11. Гемодинамические механизмы
- 14.13. Нейрогуморальные механизмы компенсации функций нервной системы
- 14.14.1. Функциональные и морфологические изменения, трансплантата 6 мозгу реципиента
- 14.14.8. Восстановление генных нарушений функций
- Эмбриональной ткани
- 15. Компенсаторные процессы в вегетативной нервной системе
- 376 Физиология центральной нервной системы
- Оглавление
- 1. Методы изучения физиологии
- 2. Основы физиологии нейрона,
- 3. Общие свойства нервной системы 30
- 5. Ствол мозга 63
- 15. Компенсаторные процессы в вегетативной нервной