logo
ВОЕННАЯ ТОКСИКОЛОГИЯ

16.3.3. Судьба облученной клетки

Судьба облученной клетки определяется соотношением эффективности процессов биологического усиления и репарации. Чем выше доза облуче­ния, тем выше вероятность того, что в результате процессов биологиче­ского усиления появятся необратимые изменения, приводящие к гибели клетки, ее злокачественному перерождению, нарушению пролифератив-ной активности, ограничению дифференцировочных потенций, сниже­нию функциональных возможностей и т. п. Чем ниже доза, чем меньше повреждений возникло в клетке, тем вероятнее восстановление от воз­никших повреждений, сохранение жизнеспособности и основных функ­ций клетки.

Во всех делящихся клетках сразу после облучения временно прекра­щается митотическая активность («радиационный блок митозов»). Резкое снижение митотического индекса и, как следствие, прекращение увели­чения количества клеток наблюдается как в культурах in vitro, так и при облучении многоклеточного организма. Длительность задержки деления тем больше, чем выше доза (обычно не дольше суток). Может наблюдать­ся задержка перехода из фазы Gi в S и из фазы G2 в М,

Подавление синтеза ДНК не может рассматриваться как причина тор­можения митотической активности: последняя снижается ранее, чем на­чинает обнаруживаться уменьшение включения в ДНК меченых предше­ственников. Блок митозов объясняют нарушением процессов, регулирую­щих клеточное деление. В частности, может иметь значение нарушение образования веретена, обеспечивающего расхождение хромосом в митозе.

Задержка деления в клетках активно пролиферирующих тканей (та­ких, например, как костный мозг) является существенной причиной их опустошения после облучения.

К функциональным нарушениям в клетках могут быть отнесены и та­кие проявления, как снижение фагоцитарной активности нейтрофилов после облучения, изменения активности некоторых ферментов в этих клетках. При дозах облучения, превышающих несколько десятков грей, важным послелучевым эффектом является нарушение функциональной активности нервных клеток, связанное с дефицитом макроэргов, в резу­льтате расходования их предшественников в процессе репарации разры­вов ДНК.

Формы лучевой гибели клеток

Важнейшим радиобиологическим эффектом является гибель клеток. Раз­личают две основные ее формы: репродуктивную, т. е. непосредственно связанную с процессом деления клетки, и интерфазную, которая может произойти в любой фазе клеточного цикла.

Репродуктивная форма гибели клеток

Как указывалось ранее, радиационное повреждение уникальных мо­лекул ядерной ДНК имеет особо важное значение для развития лучевого процесса. Однако, если речь идет о ДНК в неделящихся клетках, повреж­дение «немых» участков ее цепей может и не сказаться существенно на функциях этих клеток.

Для пролиферирующих же клеток значение повреждения ДНК трудно переоценить. Необходимым подготовительным этапом к делению клетки является репликативный синтез ДНК. Двойная спираль ДНК разделяется на две самостоятельные нити, и на каждой из образовавшихся одиночных цепей, ставшими матрицами, достраивается парная к ней путем последо­вательного присоединения нуклеотидов, комплементарных матричным. В конце концов генетическая информация удваивается и клетка оказыва­ется готовой к делению.

Если в результате облучения возникли повреждения ДНК, например двойные разрывы или сшивки, нормальная репликация делается невоз­можной. При формировании хромосом повреждения ДНК проявляются возникновением мостов, фрагментов и других типов хромосомных абер­раций, многие из которых детальны, поскольку невозможно равномерное распределение генетического материала между дочерними клетками. Эта форма гибели клеток (в митозе) получила наименование репродуктивной гибели.

Количество повреждений ДНК, возникающих в результате облуче­ния, достаточно велико. Так, например, при облучении в дозе 1 Гр в каж­дой клетке человека возникает около 1000 одиночных и 100—200 двой­ных разрывов. Каждое из этих событий могло бы иметь фатальные последствия, если бы не существовало упоминавшихся ранее систем, способных ликвидировать большинство возникших повреждений ДНК. Клетки, успевшие репарировать повреждения ДНК до вступления в фазу митоза, способны к нормальному делению. Вызываемое облучением тор­можение процессов подготовки к делению объективно может благопри­ятно сказаться на судьбе клетки, поскольку в результате увеличивается время, необходимое для репарации лучевого повреждения. Сейчас боль­шинство исследователей считают, что непосредственной причиной ре­продуктивной гибели клеток являются нерепарированные повреждения ДНК, прежде всего двойные разрывы цепей и повреждения ДНК-мемб-

зев

ЗВЗ

ранного комплекса. Морфологически клетки, погибающие по репродук­тивному типу, можно выявить в ана- или метафазе митоза, обнаружив в них хромосомные аберрации.

Интерфазная форма гибели клеток

По интерфазному типу могут погибать как неделящиеся клетки, так и делящиеся, но находящиеся вне фазы митоза. Чаще всего для возникно­вения интерфазной гибели требуется облучение в достаточно высокой дозе. Для некоторых типов клеток (миоциты, нейроциты) это десятки и даже сотни грей. В то же время такие клетки, как лимфоциты, тимоциты, ооциты, могут погибнуть уже после воздействия в дозах порядка десятых и даже сотых долей грея.

Механизмами интерфазной гибели клеток могут быть некроз и апоп-тоз. Исходным событием для некроза клеток, подвергшихся облучению, является чаще всего вызванное активацией перекисного окисления ли­пидов повреждение внутриклеточных мембран. Повреждение мембран нарушает работу связанных с мембранами ферментов, подавляет процесс окислительного фосфорилирования. Повышение проницаемости мемб­ран приводит к нарушению градиентов концентраций низкомолекуляр­ных веществ в клетке, выходу лизосомальных протеаз и нуклеаз в цито­плазму и проникновению их в ядро. Угнетается клеточное дь!хание. В результате всех этих процессов развивается деградация нуклеопротеид-ных комплексов в ядре, происходит расплавление или (реже) пикноз ядра, цитолиз с выходом содержимого клетки за пределы клеточной мем­браны.

В случае апоптоза происходит межнуклеосомная деградация хрома­тина, проявляющаяся позднее фрагментацией ядра. Распадается и цито­плазма, участки которой, окружающие осколки ядра, получили наиме­нование «апоптотических телец». По существующим представлениям, процесс апоптоза запускается включением программы самоуничтоже­ния клетки. Происходит активация участков генома, которые контроли­руют синтез ферментов, участвующих в деградации хроматина. Эту ак­тивацию могут вызывать стимулы, возникающие под влиянием разных факторов, в том числе и вызванных облучением повреждений мембран­ных структур ядерного хроматина. Таким образом, апоптоз — это гене­тически опосредуемая программированная форма клеточной гибели. Механизм апоптоза особенно характерен для интерфазной гибели лим-фоидных клеток, клеток кроветворной ткани.

Как при репродуктивной, так и при интерфазной формах гибели клет­ки наблюдается разрушение генетического материала. Однако в первом случае это разрушение происходит в результате прямого или непрямого действия радиации на уникальные структуры ядерной ДНК. В иницииро­вании интерфазной гибели существенная роль принадлежит повреждени­ям иных структур — внутриклеточных мембран, ферментов, нарушению клеточного метаболизма, и лишь на конечных этапах поражается геном.

Нелетальные повреждения генома клетки

Важным для организма результатом некоторых типов лучевой модифика­ции молекул ДНК является возникновение наследуемых повреждений генетического материала — мутаций, следствием которых может быть злокачественное перерождение соматических клеток. Причиной возник­новения мутации могут стать и вызванная облучением дестабилизация ДНК, и процесс репарации ее повреждений. В обоих случаях облегчается внедрение онковирусов в геном клетки или происходит активация тех он­ковирусов, которые уже предсуществовали в геноме в репрессированном состоянии. Следствием мутации в зародышевых клетках могут стать де­фекты развития у потомства облученных родителей.