Нуклеоид
Нуклеоид:
не имеет ядерной мембраны и не связан с гистонами;
одна непарная суперспирализованная хромосома состоит из двунитевой молекулы ДНК (кольцевой или линейной) размером от 3х108 до 2,9х109 Д и содержит до 4600 генов;
один конец бактериальной хромосомы связан с мезосомой;
некоторые бактерии имеют сложные геномы, состоящие из двух или нескольких репликонов.
Структура ДНК и генетический код. Материальной основой наследственности, определяющей генетические свойства всех организмов, является ДНК. Исключение составляют только РНК–содержащие вирусы, у которых генетическая информация закодирована в РНК.
ДНК состоит из последовательности химически связанных нуклеотидов и имеет структуру правильной двойной спирали из закрученных одна вокруг другой двух полинуклеотидных цепей. Каждый нуклеотид состоит из азотистого основания, сахара дезоксирибозы и фосфатной группы. Азотистые основания представлены пуринами (аденин, гуанин) и пиримидинами (тимин, цитозин). ДНК содержит А, С, G, Т; РНК — А, С, G, U.
Каждый нуклеотид обладает полярностью. У него имеются дезоксирибозный 3'–конец и фосфатный 5'–конец. Нуклеотиды соединяются в полинуклеотидную цепочку фосфодиэфирными связями между 5'–концом одного нуклеотида и 3'–концом другого. Соединение между двумя цепочками обеспечивается водородными связями комплементарных азотистых оснований: аденина с тимином, гуанина с цитозином. Нуклеотидные цепи антипараллельны: на каждом конце линейной молекулы ДНК расположены 5'–конец одной цепи и 3'–конец другой цепи. Последовательность нуклеотидов ДНК определяет последовательность аминокислотных остатков в молекуле белка.
Каждому белку соответствует свой ген — уникальная структурная единица наследственности. Ген — фрагмент полинуклеотидной цепи молекулы ДНК, отличающийся числом и специфичностью последовательности нуклеотидов и кодирующий синтез одного пептида. В ДНК содержатся структурные и регуляторные гены.
Структурные гены несут информацию о синтезируемых ферментах или структурных белках. Гены, ответственные за синтез вещества, обозначают строчными буквами латинского алфавита, соответствующими названию данного вещества со знаком «+» (his+ — гистидиновый ген, leu+ — лейциновый ген). Гены, контролирующие резистентность к лекарственным препаратам, фагам, обозначают буквой r (resistent — резистентный). Напр., резистентность к стрептомицину записывается strr, а чувствительность — strs.
Регуляторные гены регулируют транскрипцию структурных генов.
Хромосома состоит из особых функциональных единиц — оперонов. Оперон — совокупность промотора, оператора и структурных генов — является функциональной генетической единицей, регулирующей экспрессию одного или группы генов.
Основные этапы развития генетической системы: кодон ген оперон геном вирусов и плазмид хромосома прокариот (нуклеоид) хромосомы эукариот (ядро).
Регуляция выражения генетической информации у бактерий. Бактериальная клетка способна запустить или прекратить синтез фермента в зависимости от присутствия соответствующего субстрата. Для этого бактериальные гены объединены в группы так, что все ферменты, необходимые для осуществления биосинтеза, детерминируются генами, сцепленными друг с другом. Вся группа генов может транскрибироваться в одну полицистронную мРНК, которая последовательно транслируется рибосомами с образованием каждого из белков.
Экспрессия генов у прокариот регулируется на уровне транскрипции. Роль сигнальных веществ для запуска транскрипции играют низкомолекулярные соединения, которые являются либо субстратом для фермента, либо продуктом ферментативной деятельности. Индукция и репрессия представляют собой разные стороны одного и того же явления. Малые молекулы, индуцирующие образование ферментов, способных метаболизировать их, называются индукторами. Те же, которые предотвращают образование ферментов, способных синтезировать их, —корепрессорами.
Молекулы-эффекторы не могут вступать в прямое взаимодействие с ДНК, посредником для них служит специальный регуляторный белок. Регуляторный белок, который связывается с ДНК в отсутствии индуктора, называется репрессором.
За синтез регуляторных белков ответственны регуляторные гены. В присутствии белка-репрессора транскрипция блокирована; его удаление обусловливает доступ РНК-полимеразы к генам и запуск транскрипции. Прекращение синтеза фермента при помощи белка-репрессора получило название репрессии. Репрессия позволяет бактериальной клетке избежать перевода своих ресурсов на ненужную в данный момент синтетическую активность. Если индуктор присутствует в клетке в высокой концентрации, то в результате специфического присоединения к регуляторному белку он изменяет его конформацию и способность связываться с ДНК.
Контроль транскрипции достигается взаимодействием регуляторного белка с регуляторным сайтом (оператором), который расположен между структурными генами и промотором (участком, распознаваемым ДНК-зависимой РНК-полимеразой). Промотор служит местом связывания РНК-полимеразы, и от него начинается транскрипция.
Ген имеет три фундаментальные функции.
1. Непрерывность наследственности — обеспечивается полуконсервативным механизмом репликации ДНК: каждая из двух цепочек ДНК хромосомы или плазмиды служит матрицей для синтеза комплементарной дочерней цепочки ДНК.
Репликация начинается с расплетения двунитевой структуры ДНК ферментом ДНК-гидролазой. При этом формируются две репликативные вилки, которые двигаются в противоположных направлениях, пока не встретятся. Формирование новой дочерней цепи осуществляется ферментом ДНК-полимеразой, присоединяющей комплементарные матрице нуклеотиды к свободному 3'–концу растущей цепочки. Для осуществления реакции полимеризации нуклеотидов на матрице родительской цепочки ДНК-полимеразе требуется затравка, которая называется праймером (англ. primer - запал). Праймер — короткая нуклеотидная цепочка, комплементарная матричной цепочке со свободным 3'–концом.
Две цепи двойной спирали ДНК комплементарны друг другу. На каждой цепи из структурных элементов ДНК (дезоксирибонуклеозидтрифосфатов) синтезируется новая цепь. При этом с каждым из оснований спаривается комплементарное ему основание, так что каждая из двух новых цепей будет комплементарна родительской цепи. Обе новые двойные цепи состоят из одной родительской и одной вновь синтезированной цепи. Такая точная репликация ДНК гарантирует сохранение генетической информации. ДНК бактерий, будучи носителем наследственной информации, сама не служит матрицей для синтеза полипептидов. Биосинтез белков происходит на рибосомах, которые непосредственно с ДНК не соприкасаются. Передачу записанной в ДНК информации к местам синтеза белка осуществляет одноцепочечная мРНК. По последовательности оснований цепь мРНК комплементарна цепи ДНК и отличается от цепи ДНК тем, что тимин в РНК заменен урацилом.
Транскрипция — синтез мРНК на одной из цепей ДНК, начиная с 5'–конца; механизм этого процесса сходен с механизмом репликации ДНК.
Трансляция — перевод нуклеотидной последовательности мРНК в последовательность аминокислот. Аминокислоты затем собираются в полипептидную цепь, т. е. синтезируется белок (рис. 72).
Рис. 72. Биосинтез белка
Последовательность аминокислот определяет пространственную структуру белка — конформацию. По мере продвижения рибосомы вдоль мРНК полипептидная цепь растет, закручивается и свертывается в клубок. В результате возникает структура, обусловливающая специфические свойства и функцию данного белка. К мРНК обычно прикрепляется несколько рибосом, так что на одной и той же матрице одновременно синтезируется несколько полипептидных цепей. На конце мРНК находится кодон, от которого зависит отделение сформированной полипептидной цепи от рибосомы.
Таким образом, нуклеотидная последовательность ДНК представляет собой закодированную «инструкцию», определяющую структуру специфического белка. Репликация хромосомной (и плазмидной) ДНК обусловливает передачу генетической информации по вертикали — от родительской клетки к дочерней. Передача генетической информации по горизонтали осуществляется при генетических рекомбинациях.
2. Взаимоотношения между последовательностью нуклеотидов в гене и последовательностью аминокислот в белке устанавливаются с помощью генетического кода из четырех оснований. Код триплетный, поскольку кодон (функциональная единица, кодирующая аминокислоту) состоит из трех оснований. Последовательности кодонов считываются непрерывно, начиная с фиксированной стартовой точки на одном конце гена и заканчивая точкой терминации на другом конце гена. Это значит, что различные части гена не могут читаться независимо.
- Общая медицинская микробиология
- Общая медицинская микробиология
- Список сокращений
- Этапы развития микробиологии
- Особенности микроорганизмов
- Систематика бактерий
- 4. Смешанный подход.
- Отличия прокариотов и эукариротов
- Таксоны, применяемые в бактериологии:
- Подвидовые таксоны:
- Клон (греч. Klon — росток) — генетически однородная чистая культура микроорганизмов, полученная из одной материнской клетки.
- Номенклатура бактерий
- Морфология бактерий
- Мелкие и средние длиной 2–5 мкм, толщиной 0,4–0,8 мкм; — энтеробактерии;
- Длинные палочки длиной до 10 мкм, толщиной 0,5–2 мкм — бациллы;
- Бактерии — не образуют спор; необходимо иметь в виду, что термин «бактерия» часто используют для обозначения всех микроорганизмов-прокариот;
- Бациллы — спорообразующие аэробы; диаметр эндоспоры обычно не превышает ширины клетки;
- Клостридии — спорообразующие анаэробы; диаметр споры больше поперечника вегетативной клетки, в связи с этим клетка напоминает веретено или теннисную ракетку.
- Структура бактериальной клетки
- Обязательными органеллами бактериальной клетки являются нуклеоид, цпм, мезосомы, цп, рибосомы.
- Политрихи — много жгутиков:
- Клеточная стенка (кс)
- Формы бактерий с дефектом кс
- Запасные вещества прокариот
- 7.12. Эндоспоры
- Терморезистентность эндоспор обусловлена:
- Практически полным отсутствием свободной воды;
- Большим содержанием кальциевой соли дипиколиновой кислоты, которая не встречается у вегетативных клеток;
- Особым строением белка;
- Стадии спорообразования (споруляции):
- Стадии прорастания споры:
- Систематическое положение спирохет
- Морфология спирохет.
- Отличительные признаки патогенных спирохет
- Характеристика трепонематозов
- Боррелии
- Фиксированные препараты окрашивают по Романовскому-Гимзе или фуксином. Боррелии при окраске по Романовскому-Гимзе —фиолетовые, фуксином — розовые (рис. 45б).
- Лептоспиры
- Актиномицеты
- Систематическое положение актиномицетов
- 5) Актиномикоз цнс.
- Риккетсии
- Риккетсии названы в честь американского микробиолога х. Риккетса, открывшего возбудителя одного из риккетсиозов — пятнистой лихорадки скалистых гор и погибшего от этой инфекции (1909).
- Систематическое положение риккетсий
- Характеристика риккетсиозов
- Хламидии
- Систематическое положение хламидий
- Хламидии — мелкие коккобактерии, диаметром 250-300 нм, имеющие маленький геном — кольцевую днк, кодирующую синтез 500 белков.
- Хламидии сохраняют жизнеспособность во внешней среде при низких температурах, быстро погибают при воздействии высоких температур, при действии дезинфектантов.
- Тропны к цилиндрическому эпителию;
- Дифференциация родов семейства Chlamydiaceae
- Роль хламидий в патологии
- Микоплазмы
- Систематическое положение микоплазм
- Отличия микоплазм от других прокариот:
- Малый размер генома, наименьший у прокариотов (1/16 генома e. Coli, 1/10 генома риккетсий);
- Роль микоплазм в патологии
- Сравнительная характеристика спирохет, актиномицетов, риккетсий, хламидий, микоплазм
- Обмен веществ и энергии (метаболизм) у прокариотов
- Химическая структура и питательные потребности бактерий
- Питание микроорганизмов
- Конструктивный метаболизм
- Пути получения энергии у прокариотов
- Классификация бактерий по особенностям энергетического метаболизма
- Сравнительная эффективность различных способов получения энергии у гетеротрофов
- Энергетический метаболизм
- Классификация бактерий по отношению к кислороду воздуха
- Метаболическое направление эволюции микроорганизмов
- Рост и размножение микроорганизмов Рост микроорганизмов
- Размножение микроорганизмов
- Способы размножения микроорганизмов
- II. Бесполые способы размножения.
- Покоящиеся формы микроорганизмов
- Противомиробные мероприятия
- Стерилизация
- Резистентность эндоспор и вегетативных клеток
- Способы стерилизации
- Наиболее часто используемые режимы стерилизации паром под давлением
- Режимы стерилизации сухим жаром
- Стерилизации инструментов и изделий медицинского назначения
- Факторы, определяющие эффективность стерилизации
- Виды контроля стерилизации в лпу
- Максимальные сроки сохранения стерильности объектов в зависимости от вида упаковки
- Дезинфекция
- Способы дезинфекции
- Спектр антимикробной активности веществ, входящих в состав дезинфектантов
- Корреляция классификации медицинских инструментов с уровнем дезинфекции
- Характеристика дезинфектантов
- Условия химической инактивации некоторых микроорганизмов
- Антисептика
- Способы антисептики
- Препараты нпо «БелАсептика», зарегистрированные мз рб и рекомендованные к применению
- Асептика
- Методы асептики
- Противомикробный режим
- Генетика бактерий
- Наследственность бактерий
- Генетический аппарат бактерий
- Нуклеоид
- 3. Эволюция организмов происходит благодаря мутациям и генетическим рекомбинациям.
- Плазмиды
- Мобильные (мигрирующие) генетические элементы
- Сравнительная характеристика внехромосомных факторов наследственности
- Характеристики геномов некоторых бактерий
- Изменчивость бактерий
- Сравнительная характеристика изменчивости
- Мутации
- Классификации мутаций
- I. По происхождению.
- II. По проявлению мутации в фенотипе.
- 1. Проявленные (доминантные).
- III. По направленности действия.
- IV. По фенотипическим последствиям для мутировавшей клетки.
- V. По характеру изменений в первичной структуре днк.
- I. Репарации.
- Генетические рекомбинации
- Фенотипическая изменчивость
- Практическое использование изменчивости
- Медицинская биотехнология и генная инженерия
- Геномика
- Учение об инфекционном процессе Инфекционные заболевания в патологии человека
- Инфекционный процесс и факторы, влияющие на него
- III. Условия (факторы) внешней среды, в которых взаимодействуют макро- и микроорганизм.
- Классификации инфекционных заболеваний
- Кровяные инфекции: вирусные гепатиты в и с;
- Респираторные инфекции: дифтерия, корь, коклюш, менингококковая инфекция, скарлатина;
- Инфекции наружных покровов: сифилис, гонорея, хламидиоз;
- «Вертикальные» инфекции: вирусный гепатит в, вич–инфекция;
- Характеристика механизмов и путей передачи инфекции
- Генерализованная (общая) — микроорганизм распространяется (диссеминирует) из ворот инфекции лимфогенным, гематогенным путем или по отросткам нейронов:
- Спорадическая заболеваемость — отдельные случаи одной нозологической формы, эпидемически не связанные между собой;
- Эпидемии: лавинообразное нарастание заболеваемости, случаи эпидемически связаны между собой;
- Пандемии: эпидемия, охватывающая несколько стран, целый континент, всю человеческую популяцию;
- Периоды инфекционного заболевания
- Характеристика периодов инфекционного заболевания
- Патогенность
- Потенциальность — может реализоваться при определенных условиях:
- Вирулентность
- Определение вирулентности Качественное определение вирулентности проводится прямым (биопроба) или косвенным (наличие ферментов вирулентности) способами.
- Факторы патогенности
- Колонизацию — размножение бактерий на поверхности клеток макроорганизма;
- Инвазию — проникновение бактерий через слизистые и соединительнотканные барьеры макроорганизма в подлежащие ткани;
- Переход возбудителя к другому хозяину.
- У Грам- бактерий — пили I и общего типов;
- Капсульные полисахариды клебсиелл, поверхностные белки, липополисахариды;
- Гемагглютинины вирусов.
- Фибринолизины (стрептокиназа и стафилококкокиназа) растворяют сгусток фибрина, ограничивающий местный очаг воспаления, что позволяет бактериям быстро распространяться в органы и ткани;
- Ферменты агрессии микрорганизмов:
- ДнКаза — деполимеризует днк;
- 6. Другие:
- Характеристика бактериальных токсинов
- Сравнительная характеристика бактериальных экзотоксинов и эндотоксинов
- Активация комплемента по альтернативному пути;
- Поликлональная стимуляция и пролиферация в–лимфоцитов, синтез Ig m;
- Системы секреции факторов патогенности у Грам- бактерий
- Генетический контроль факторов патогенности
- Синдром системного воспалительного ответа
- Химиотерапия инфекционных заболеваний Этапы становления химиотерапии
- Классификация антимикробных средств
- Группы химиопрепаратов
- 1. По антимикробному спектру действия:
- 2. По происхождению:
- 3. По типу действия:
- 4. По направленности действия:
- 5. По химическому строению:
- Классификация и спектр активности пенициллинов
- Классификация и спектр активности цефалоспоринов
- Классификация и спектр активности аминогликозидов
- Классификация макролидов
- Классификация фторхинолонов
- Классификация антибиотиков по механизму действия
- Антибиотикорезистентность, ассоциированная с модификацией мишени
- 5. Снижение физиологической роли мишени и формирование метаболического «шунта».
- 7. Модификация структуры молекулы антибиотика, приводящая к утрате биологической активности.
- Наиболее частые механизмы резистентности бактерий к антибиотикам
- Побочные действия антибиотиков
- 5. Влияние на иммунный ответ.
- 6. Возникновение антибиотикорезистентных форм микроорганизмов:
- Операции и состояния, при которых целесообразна антибиотикопрофилактика
- Бактерии, проявляющие резистентность к антибиотикам
- Экологическая микробиология Экология микроорганизмов
- Время возникновения живых существ
- Экологическое направление эволюции микроорганизмов
- Экологические понятия
- Концепция микробной доминанты
- Роль микроорганизмов в круговороте веществ в природе
- Микробиологические аспекты охраны окружающей среды
- Экологические связи
- Экологические факторы абиотической среды
- Действие на микроорганизмы физических факторов внешней среды
- Действие на микроорганизмы химических факторов внешней среды
- Экологические среды микроорганизмов
- Бактериологические показатели, рекомендуемые для санитарно-гигиенической оценки воздуха лпу
- Эумикробиоз и дисбиоз
- Наличие/отсутствие микроорганизмов в биотопах тела человека
- Биотопы, имеющие постоянную микрофлору
- Значение нормальной микрофлоры
- Эубиоз различных биотопов организма человека
- Показатели, характеризующие эубиоз кишечника
- Показатели, характеризующие степень чистоты влагалища
- Дисбиоз (дисмикробиоз)
- Причины дисбиоза:
- Классификации дисбиозов:
- Дисбиоз полости рта
- Дисбиоз кишечника
- Принципы коррекции дисбиоза
- 1. Устранение причины, вызвавшей дисбиоз.
- Основные группы пробиотиков на основе компонентов микроорганизмных клеток или метаболитов
- Бактериофаги, используемые для коррекции дисбиоза кишечника
- Профилактика дисбиоза
- Методы изучения нормальной микрофлоры
- Литература
- Оглавление