logo search
TerStomNew

6.1.1 Композитные материалы

Композитными называют материалы, со­стоящие из нескольких компонентов При этом, материалы, применяемые в стома­

тологии, могут отличаться от применяе­мых в других областях.

В стоматологии композитными называ­ют синтетические пломбировочные ма­териалы цвета естественных зубов, ко­торые после внесения в полость зат­вердевают вследствие химической реакции или под воздействием света

Современные стоматологические компо­зитные материалы состоят из многочис­ленных компонентов, определяющих их свойства. Три основные компонента органическая матрица, дисперсная фаза (наполнитель) и связывающая фаза (си-ланы, сополимеры).

Композитная матрица в незатвер­девшем состоянии состоит из мономеров (табл. 6-1), инициаторов, стабилизато­ров, красителей, пигментов и других до­бавок.

Из мономеров чаще используются многофункциональные метакрилаты с упрощенной формулой: MA-R-MA.

Промежуточным звеном R могут быть алифатичные цепи, урэтанпреполимеры, ароматические кольца и полиэфиры

МА - это остаточные сложные эфиры метакриловой кислоты Молекулы компо­зитной матрицы обладают относительно высокой скоростью реакции даже при низких температурах, хорошими физи­ческими свойствами, относительной цве­тоустойчивостью и небольшим токсич­ным действием. Они менее токсичны, чем чистые метакрилаты, не имеют запаха и вкуса.

133

Таблица 6-1. Мономеры, применяемые в композитных материалах

Центральная молекула (R) влияет на механические свойства, водопоглощае-мость, усадку, степень полимеризации, вязкость. Если в состав молекулы входит значительное число атомов кислорода или гидроокисных групп, то водопоглощае-мость композитной матрицы увеличива­ется. Если мономеры состоят из длинных цепей, то при затвердевании усадка будет меньшей, чем у молекул, состоящих из коротких цепей. Так как с увеличением длины мономерных молекул увеличивает­ся вязкость, то для улучшения обрабаты­ваемости добавляют мономеры-разжижи-тели. Это приводит к укорачиванию це­пей и, как следствие, к повышению усадки.

Инициаторы — это компоненты мат­рицы, которые посредством активации

(химическими и физическими активато­рами) распадаются на энергоемкие моле­кулы (радикалы), которые вступают в ре­акцию с двойными связями мономера. При этом образуются полимерные цепи. Активность вступления инициаторов в реакцию является решающим фактором при полном затвердевании (степень по­лимеризации и степень конверсии двой­ных связей). Чем больше степень преоб­разования мономерной молекулы, тем выше механические и физические свой­ства композитной матрицы.

В то же время инициаторы влияют на цветоустойчивость. Они могут окрашивать композитный материал, отдавая собствен­ную окраску в процессе реакции полиме­ризации, или образуя побочные реакции.

Стабилизаторы (ингибиторы) — это стериновые фонолы, например, гидрохи-нонмономерэтилэфир. Они вступают в реакцию с образовавшимися ранее ради­калами мономерной пасты и препятству­ют преждевременной полимеризации, увеличивая продолжительность хранения пломбировочных материалов.

С целью создания разноокрашенных материалов в композиции добавляют органические и неорганические пигмен­ты. В качестве красящих пигментов в настоящее время часто применяют оки­си железа.

К другим добавкам принадлежат пла­стификаторы, светозащитные сред­ства. оптические прояснители.

Смолистая матрица имеет низкую вяз­кость, благодаря хорошей текучести ис­пользуется для герметизации фиссур (в большинстве случаев окрашенная) и в качестве эмальсвязывающего посредни­ка (неокрашенная) при наложении ком­позитных пломб (бондинг).

С целью улучшения механических и физических свойств смолистой матрицы добавляют неорганические наполните­ли. Их назначение - повысить устойчи­вость к давлению, модуль эластичности и износостойкость материала (табл. 6-2).

Одновременно необходимо уменьшать полимеризационную усадку, коэффици­ент линейного термического расширения и водопоглощаемость. В качестве неор­ганических наполнителей применяют кварц, керамику и двуокись кремния. В основе принятой в настоящее время клас­сификации композитных материалов -вид и величина применяемых частиц на­полнителя (рис. 6-1).

Обычные композиты содержат мак­ронаполнители. Неорганические напол­нители в чистом виде находятся в форме осколков и состоят из кварца, стекла или керамики. Для придания рентгеноконтра-стности стекло дополнительно может со-

135

Рис. 6-1. Классификация композитов соответственно виду наполнителя:

а - Обычные композиты с макронаполнителями из кварца, стекла или керамики. Средняя ве­личина частиц составляет более 10 мкм и менее 5 мкм.

б - Гибридный композит с макро- и микронаполнителями из SiO^. Средняя величина частиц составляет более 10 мкм, от 2 до 10 мкм и менее 2 мкм. В современных сверхмелкозерни­стых гибридных композитах средняя величина частиц - менее 1 мкм. в - Однородные композиты с микронаполнителями, величина частиц 0,01 -0,04 мкм. г - Неоднородные композиты с микронаподнителями с осколко- и шаровидными наполните­лями (100-200 мкм).

136

держать тяжелые металлы (бариевое-, стронциевое стекло). В используемых в настоящее время обычных композитных материалах величина частиц наполните­ля колеблется в пределах от 0,1 до 100 мкм.

Средняя величина частиц наполните­ля составляет 1,5-5 мкм. Таким образом, обычные композиты содержат макроэле­менты, величина которых превышает дли­ну световых волн и они различимы че­ловеческим глазом. Разная твердость матрицы и наполнителя при одновремен­ном гидролизе связывающей фазы вызы­вает выпадание частиц наполнителя из матрицы. После полирования поверх­ность снова становится шершавой. По­этому обычные композитные материалы не требуют полировки. В то же время вы­падание частиц наполнителя из поверх­ностного слоя приводит к тому, что не­защищенная эластичная композитная матрица в полости рта подвергается ис­тиранию. Поэтому обычные композитные материалы обладают низкой стойкостью к истиранию.

Применяя современные материалы с макронаполнителями меньшего размера достигают большей степени наполнен-ности. Эти материалы имеют меньшую усадку и водопоглощаемость, а также низкий коэффициент теплового расшире­ния, а после полирования не достигается надлежащий блеск. Рентгеноконтрастные добавки соответственных неорганичес­ких частиц наполнителя вызывают повы­шенную растворимость и проникание ионов тяжелых металлов в полость рта.

Композитные материалы с микро­наполнителями содержат наполнители с размером частиц менее 1 мкм. Широко применяемые композиты с микронапол­нителями содержат высокодисперсные кремниевые кислоты (двуокись кремния) размером от 0,007 мкм до 0,04 мкм. Все частицы шаровидной формы, их получа­

ют в результате гидролиза тетрахлорида кремния. Микронаполнители имеют большую удельную площадь (50-400 м^г) и при добавлении в органическую матри­цу повышают вязкость. При определении приемлемого содержания наполнителя производителями разработаны компози­ты с неоднородными наполнителями.

Осколкообразные предполимеризаты получают путем измельчения компо­зитных материалов, содержащих мик­ронаполнители. Другой применяемый способ - это изготовление предполи-меризатов шаровидной формы. Эти пред­полимеризаты добавляют вместе с други­ми микронаполнителями к композитной матрице. Содержание наполнителя повы­шается, причем консистенция не стано­вится чрезмерно вязкой и не затрудняет дальнейшую обработку материала. Еще один способ - спекание мелких частиц двуокиси кальция с последующим дроб­лением их на более крупные частицы. Добавляя полученные таким образом аг­ломераты микронаполнителя к матрице, повышают содержание наполнителя до 70-80%. Композитные материалы с мик­ронаполнителями полируются и имеют поверхностный блеск. Диаметр их частиц меньше, чем длина волн видимого пучка света. Поэтому при выпадании наполни­теля с поверхностного слоя шерохова­тость незаметна. Материалы с микрона­полнителями имеют большую стойкость к истиранию, чем композиты с макрона­полнителями, так как частицы распреде­лены более равномерно по поверхности и абразивная пища не достигает мягкой матрицы. Композиты с микронаполните­лями не рентгеноконтрастны и имеют большую водопоглощаемость и более низкие физические свойства, чем мате­риалы с макронаполнителями. Содер­жание наполнителя по массе составляет 50% (кроме агломерированных микро­наполнителей) и, как следствие, большая

137

пояимеризационная усадка, меньшие значения прочности на изгиб, твердости по Викерсу и модуля эластичности, чем у обычных композитов. Однако, они более прочные, чем последние. Еще один недостаток - образование трещин на гра­ничных поверхностях осколкообразных предполимеризатов и матрицы при поли­меризации и под воздействием жеватель­ных нагрузок. Трещины приводят к вторичному уменьшению износостой­кое™ этих материалов в области боковых зубов.

Для объединения положительных свойств обеих композитных систем необ­ходимо сочетание их составляющих в од­ном материале. При этом образуются т. н. гибридные композиты. В гибридных композитах примерно 85-90% по массе составляют макрочастицы и 10-15% мик­рочастицы. При этом общее содержание частиц наполнителя удается повысить до 85%. Гибридные композиты можно из­готовить рентгеноконтрастными, они об­ладают отличными физическими свойст­вами. Мелкозернистые гибридные ком­позиты содержат макронаполнители диаметром менее 2 мкм, их можно поли­ровать. Изн о со стойкость их меньше, чем обычных композитных материалов и сравнима с износостойкостью материа­лов с макронаполнителями.

В настоящее время в зависимости от места применения рекомендуются две композитные системы. Для пломбирова­ния полостей!, П, 111. IV и Vклассов обыч-но применяют мелкозернистые гибрид­ные композитные материалы. Краевое прилегание, отсутствие усадки, эстети­ческий вид, рентгеноконтрастность, изно-состойкость и простота обработки - бес­спорные преимущества этой группы ма­териалов.

Если в некоторых случаях физически­ми качествами можно пренебречь, а пре­обладают эстетические соображения, то

138

применяют композитные материалы с микронаполнителями.

От силанизации наполнителя зави­сит связывание с органической матрицей. В качестве силаниэирующего средства применяют 3-метакрилолоксипропилт-риметоксисилан. При этом происходит гидрофобирование наполнителя и, затем полимеризация мономера с остаточной метакриловой кислотой силана. Связыва­ние наполнителя с матрицей значитель­но повышает механические показатели (прочность на изгиб, давление, твердость по Викерсу). Связь наполнителя с матри­цей все еще является слабым местом всех композитных материалов. При кислом гидролизе разрушается химическая связь, что вызывает вьшадание частиц наполни­теля и, тем самым, повышенную истира-емость материала.

Во время полимеризации преобразо­вываются не все двойные связи композит­ных материалов (конверсия). Остаточных двойных связей остается до 45%. Это ука­зывает на наличие определенного про­центного содержания остаточного моно­мера. К тому же, во время полимериза­ции образуются новые продукты реакции, отсутствующие в исходном материале. В смолистой матрице остаются также ини­циаторы и стабилизаторы, частично не-прореагированные. Эти вещества могут обладать токсичным потенциалом. В частности остаточный мономер может оказывать раздражающее действие на пульпу, которое предотвращается приме­нением плотной прокладки. Аллергичес­кое и общетоксическое действие отдель­ных компонентов в настоящее время мало изучено, поэтому нельзя определить уро­вень токсикологического риска.

Современные композитные материалы имеют полимеризационную усадку в пре­делах 1,7-6% по массе. Поэтому во вре­мя полимеризации в материале могут воз­никать напряжения и одновременно об­

разовываться щели вдоль краев полости. Напряжения могут вызвать образование трещин на поверхности пломбы, вслед­ствие чего произойдет выпадание частиц наполнителя, т. е. повысится истираемость пломбы. Эти особенности свойств мате­риалов требуют особой методики плом­бирования композитными материалами.

При пломбировании применяют ком­позитные материалы химического и све­тового отверждения. При затвердевании первых полимеризационная усадка про­исходит в направлении центра, а при зат­вердевании вторых - источника света или протравленной эмали.

Независимо от способа отверждения процесс полимеризации начинается с воз­буждения люлекул инициатора. Под дей­ствием светового потока или химическо­го активатора они преобразуются в ради­калы (рис. 6-2).

В качестве инициатора композитные материалы химического отверждения в большинстве случаев содержат, бензол-пероксид, который при смешивании реагирует с акселератором (третичным амином). При хранении материала про­извольно образующиеся радикалы улав­ливаются ингибиторами (напр. 4-меток-сифенол).

При приготовлении композитных ма­териалов химического отверждения необ­ходимо смешивать две пасты. При заме-шивании в материал попадают пузырьки воздуха. В процессе затвердевания они образуют поры, изменяя при этом окрас­ку композита.

Наличие пористости заметно снижа­ет абразивную прочность материала. Кроме того, степень полимеризации (сте­пень конверсии) значительно ниже, чем у материалов, затвердевающих под дей­ствием света. Это вызывает повышенное содержание остаточного мономера и раз­дражающее воздействие на пульпу. С дру­гой стороны, при химической полимери-

Рис. 6-2. При полимеризации композитных материалов инициатор вследствие химической активации или под действием световой энер­гии превращается в радикал и начинается реакция расщепления молекулы мономера.

зации материал затвердевает по всей тол­щине без дополнительной энергии. Вре­мя затвердевания составляет 4-5 мин.

Известны объединенные системы, хи­мической и световой полимеризации (ду­альные).

Среди композитов светового отвер­ждения различают композиты, затверде­вающие под действием ультрафиолетово­го излучения и композиты, затвердеваю­щие под действием галогенного света. Так как ультрафиолетовое излучение вредно для сетчатки глаза и глубина по­лимеризации к тому же незначительна, то в настоящее время почти повсеместно применяют материалы, затвердевающие под действием галогенного света.

При этом в качестве фотоинициатора применяют дикетон (напр. камфархи-нон). Дикетон возбуждается энергией све­товых квантов и вступает в реакцию с вос­становительным агентом (алифатичным амином). Образуется возбужденный ком­плекс, который распадается на радикалы что свидетельствует о начале реакции.

В качестве фотоинициатора для мате­риалов, затвердевающих под действием

139